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Abstract

This article studies quantile regression in an autoregressive dynamic framework with exo-

genous stationary covariates. We demonstrate the potential of the quantile autoregressive

distributed lag model with an application to house price returns in the United Kingdom.

The results show that house price returns present a heterogeneous autoregressive behaviour

across the quantiles. Real GDP growth and interest rates also have an asymmetric impact

on house prices variations.

I. Introduction

Asymmetric dynamic responses are common in the time series empirical literature. For

instance, Beaudry and Koop (1993) show that positive shocks to the US GDP are more

persistent than negative shocks. Poterba (1991) and Capozza et al. (2002) among others,

present evidence on the asymmetric responses of house prices to income shocks.The occur-

rence of these asymmetries call into question the usefulness of models with time invariant

structures as means of modelling such series. Quantile regression (QR) is a statistical

method for estimating models of conditional quantile functions, which offers a systematic

strategy for examining how covariates inßuence the location, scale and shape of the entire

response distribution, therefore exposing a variety of heterogeneity in response dynam-

ics. Koenker and Xiao (2006) introduced quantile autoregression (QAR) models in which

the autoregressive coefÞcients can be expressed as monotone functions of a single, scalar

random variable. QAR models are becoming increasingly popular, and there is a growing
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literature about estimation of QR models for time series. Engle and Manganelli (2004)

propose a quantile autoregressive framework to model value-at-risk where the quantiles

follow an autoregressive process. Gourieroux and Jasiak (2008) study dynamic addi-

tive quantile model. Xiao (2009) proposes QR with cointegrated time series. Recently,

Xiao and Koenker (2009) studied conditional quantiles for GARCH models using

QR.1

The purpose of this article is to generalize the Koenker and Xiao (2006) QAR

framework introducing exogenous stationary covariates and to provide an application

to illustrate the usefulness of the new model to study asymmetric behaviour in time

series. We develop a quantile autoregressive distributed lag (QADL) model. The QADL

model can deliver important insights about asymmetric dynamics, such as heterogeneous

adjustments in time series models where controlling for lagged regressors and exog-

enous covariates is important. The approach proposed in this article is different from

that of Engle and Manganelli (2004) because we use QR in the standard linear time se-

ries context, modelling the conditional quantile function as linear and depending on past

values of the dependent variable, instead of modelling the quantile functions themselves

as an autoregressive process. This reduces the computational burden substantially.

Moreover, the QADLmodel allows for some forms of explosive behaviour in some quan-

tiles while maintaining stationarity of the process, as long as certain stationarity conditions

are satisÞed on the whole distribution, while Engle and Manganelli (2004) exclude this

case.2

Note that QAR and QADL in time series have a different interpretation than that of

QR in cross-sectional data. In general, QR shows how a given quantile of the conditional

distribution of y depends on the covariates x. In the cross-sectional case, this can be inter-

preted as the different effects that covariates exert on a given outcome for individuals on

that corresponding quantile of the conditional distribution. In a time series context, how-

ever, we estimate the conditional quantile function of a particular variable along time, for

instance aggregated variables such as GDP and consumption, index numbers, or as in the

illustration presented in the article house price returns. Then, we interpret the conditional

quantiles function at a given time as different phases of the business cycle, where low

and high quantiles of the conditional distribution of price returns corresponds to periods

of declining and increasing prices respectively. This interpretation might also be used for

output gap, consumption growth or value-at-risk applications.

We illustrate the QADLmodel with an application to quarterly house price returns data

in the United Kingdom (UK). House prices volatility has claimed unprecedented impor-

tance and there is a growing literature on this topic (for instance Muellbauer and Murphy,

1997; Ortalo-Magné and Rady, 1999, 2006; Rosenthal, 2006). We argue that QR can be

used to describe the asymmetric responses of house prices returns to income and interest

rates shocks. We interpret the conditional quantile functions as different phases of the

market. High quantiles correspond to a phase of unusually high conditional returns; while

1Koenker and Xiao (2004) study statistical inference in QAR models when the largest autoregressive coefÞcient
may be unity. Galvao (2009) develops tests for unit roots allowing for stationary covariates and a linear time trend
into the quantile autoregression model.

2Wedo not consider the Xiao (2009) case where the variables are cointegrated, but rather we consider an exogenous
set of stationary covariates.
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low quantiles to low conditional returns. The results show that house price returns have

an asymmetric autoregressive behaviour, and that real GDP growth and interest rates have

an asymmetric impact on house prices returns along the quantiles. In addition, the results

suggest high autoregressive persistence in the extreme high quantiles. However, unit root

tests reject the null hypothesis of unit root on house price returns. Thus, the model seems

to show global stationarity with some persistence in unusually high returns. The inclusion

of stationary covariates reduces the asymmetric autoregressive responses but maintains

the persistence in the high quantiles. The interest rates have a negative impact on house

prices returns, mostly signiÞcant for low quantiles. This can be interpreted as the fact that

the interest rate has an effect on stimulating the demand in the real estate market when

returns are low, but it does not deter house prices booms. In addition, there is evidence

that the impact of GDP on house prices presents an asymmetric effect and it is stronger for

low and high quantiles. For low quantiles, this is interpreted as the fact that GDP growth

reactivates the real estate market when returns are low, while it might be contributing to

house prices’ busts (as that in the early 1990s where a recession was accompanied by a

signiÞcant decline in house prices). Moreover, it contributes to sustaining house prices

booms. In other words, periods of unusually high (conditional) returns are very responsive

to GDP growth. Thus, the conditional mean may be a misleading parameter in periods of

low and high conditional returns, which are those when policymakers are more keen to

intervene or to predict future behaviour.

The rest of the article is organized as follows. Section II presents the model, describes

the estimator and its asymptotic properties. Section III presents some Monte Carlo evi-

dence. In section IV, we illustrate the new approach by applying it to a house price returns

dataset. Finally, section V concludes the article.

II. QADL: model, estimation and inference

The autoregressive-distributed lag model is described by the following equation

yt =l+

p
∑

j=1

ajyt−j +

q
∑

l=0

x′
t−lhl + et; t=1, . . . ,n, (1)

where yt is the response variable, yt−j is the lag of the response variable, xt is a dim(x)-

dimensional vector of covariates and et is the innovation.3 The main aim of this type of

model is to emphasize alternative short-run dynamic structures. In addition, this class of

models also provides important long-run results that are of particular interest for inference

about the validity of a proposed economic theory. Nevertheless, the least squares models

might be insufÞcient to describe heterogeneity in the impact of the shocks in a given time

series.

As in Koenker and Xiao (2006), let {Ut} be a sequence of independent and identi-

cally distributed (i.i.d.) standard uniform random variables, and consider the following

autoregressive-distributed lag process

3We assume, for convenience, that each variable in xt have the same lag truncation, q. The case of different lag
truncation for each variable is immediate.
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(
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)

+

p
∑

j=1

aj
(

Ut
)

yt−j +

q
∑

l=0

x′
t−lhl

(

Ut
)

, (2)

where a and h are unknown functions [0,1]→ R that we want to estimate. Given that

the right-hand side of equation (2) is monotone increasing on Ut , it follows that the sth

conditional quantile function of yt can be written as

Qyt
(

s |ℑt

)

=l(s)+

p
∑

j=1

aj(s)yt−j +

q
∑

l=0

x′
t−qhl(s), (3)

where ℑt is the r-Þeld generated by {ys, xs, s≤ t}.4 We refer to model (3) as the quantile

autoregressive distributed-lag of orders p and q (QADL(p,q)). Implicitly in the formula-

tion of model (3) is the requirement that Qyt (s |ℑt) is monotone increasing in s for all ℑt .

A more compact notation to describe model (3) is

Qyt
(

s |ℑt

)

= z′tb(s), (4)

where zt = (1, yt−1, . . . , yt−p, xt , . . . , xt−q)
′ andb(s)= (l(s),a1(s), . . . ,ap(s),h

′
0(s), . . . ,h

′
q(s))

′.
It is important to emphasize that monotonicity of the conditional quantile functions

imposes some discipline on the forms taken by the coefÞcients. It requires that the function

Qyt (s |ℑt) is monotone in s in a relevant region of the ℑt-space. In some circumstances,

this necessitates restricting the domain of the dependent variables; in others, when the

coordinates of the dependent variables are themselves functionally dependent, monoto-

nicity may hold globally. The estimated conditional quantile function Q̂yt (s |ℑt)= z
′
tb̂(s)

is ensured to be monotone in s at zt = z̄, as noted in Koenker and Xiao (2006). However,

this does not guarantee that it will be monotone in s for other values of z. Furthermore,

because we are using a linear model, there must be crossing sufÞciently far away from

z̄. It may be that such crossing occurs outside the convex hull of the z observations, in

which case the estimated model may be viewed as an adequate approximation within this

region. But it is not unusual to Þnd that the crossing has occurred in this region as well.5

As discussed in Koenker and Xiao (2006), one can Þnd a linear reparametrization of the

model that does exhibit co-monotonicity over some relevant region of covariate space.

Recently, Gourieroux and Jasiak (2008) propose a dynamic additive quantile model that

ensures the monotonicity of conditional quantile estimates.

The estimation procedure is based on standard linear quantile regression. Thus,

estimation of the QADLmodel (3) involves solving the following problem

4The transition from equation (2) to equation (3) is an immediate consequence of the fact that for any mono-
tone increasing function g and standard uniform random variable, U , we have Qg(U )(s)= g(QU (s))= g(s), where
QU (s)= s is the quantile function of U.

5It is easy to check whether Q̂yt (s |ℑt) is monotone at particular z points. To verify monotonicity for a given z,
one may compute this for several quantiles, and plot it against the sequence of s. If there is a signiÞcant number of
observed points at which this condition is violated, then this can be taken as evidence of model misspeciÞcation.
Failure of the monotonicity condition might also imply that the conditional quantile functions are not linear. In this
article, we assume that monotonicity of Qyt (s |ℑt) in s, for some relevant region of ℑt-space, holds. We refer the
reader to Gourieroux and Jasiak (2008), Neocleous and Portnoy (2008), Koenker and Xiao (2006), and Koenker
(2005) for more details about monotonicity in QR.

 Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2011



QAR distributed lag model 311

min
b∈ℜ1+p+(1+q)×dim(x)

n
∑

t=1

qs

(

yt − z′tb
)

(5)

where qs(u)=u(s− I (u<0)), as in Koenker and Bassett (1978). The details of the proofs

for consistency and asymptotic normality of the estimator, b̂(s), are provided in Galvao,

Montes-Rojas andPark (2009).DeÞne the following elements:X0 =E(ztz
′
t)= lim n−1

∑n

t=1

ztz
′
t , and X1(s)= lim n−1

∑n

t=1 ft−1[F
−1
t−1(s)]ztz

′
t , and let R(s)=X1(s)

−1
X0X1(s)

−1. The lim-

iting distribution of the QADL estimator for a Þxed quantile s is

√
n
(

b̂(s)−b(s)
)

d→N (0, s(1− s)R(s)).

In order to make appropriate inference, it is necessary to estimate R(s) consistently.

SinceX0 involves no nuisance parameter, it can easily be estimated as X̂0(s)=
1

n

∑n

t=1 ztz
′
t .

Let ût(s)= yt − z′tb̂(s), in order to estimate the matrix X1(s), we follow Powell (1986)

X̂1(s)=
1

2nhn

n
∑

t=1

I (|ût(s)|≤hn)ztz′t ,

where hn is an appropriately chosen bandwidth, with hn→0 and nh2n→∞.6

In model (3) the choice of p and q is important. In order to select appropriate models,

we suggest the use of BIC criteria, adapted to QADLalong the lines suggested byMachado

(1993), which is based on theAsymmetric Laplace Distribution. At the median, it uses the

criterion

BIC=n log r̂+
1+p+(1+q)×dim(x)

2
log n,

where r̂=n−1
∑ |yt− z′tb̂(1/2)|. For other quantiles, the obvious asymmetric modiÞcation

of this expression can be used. In the example given in this article, we select the number

of lags based only on the median criterion, in order to have a comparable regression model

across quantiles. But, it is possible that there are applications in which this is not desirable.

General hypotheses tests on the vector b(s) can be accommodated by Wald-type

tests (see Galvao et al., 2009). The Wald process and associated limiting theory pro-

vide a natural foundation for the hypothesis Rb(s)= r, when r is known. Here R is a

k × (1+p+ (1+q) dim(x)) matrix with rank k and r is a k-dimensional vector. This

formulation also accommodates a wide variety of testing situations, from a simple test on

single QR coefÞcients to joint tests involving several parameters and distinct quantiles.

Thus, for instance, wemight test for the equality of several slope coefÞcients across several

quantiles. Another important class of tests in the QR literature involves the Kolmogorov–

Smirnov (KS) type tests, where the interest is to examine the property of the estimator over

a range of quantiles s∈T, instead of focusing only on selected quantiles. Thus, for testing
Rb(s)= r over s∈T, one may consider the KS type sup-Wald test.

6In the simulations and application, we consider the default bandwidth suggested by BoÞnger
(1975), hn= [U−1(s+ cn) − U

−1(s − cn)]min(r̂1, r̂2), where the bandwidth cn=O(n1/3), r̂1 =
√

Var(û), and

r̂2 = (Q̂(û, .75)− Q̂(û, .25))/1.34.

 Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2011



312 Bulletin

III. Monte Carlo

In this section, we brießy present simulation experiments to assess the Þnite sample

performance of the QADL estimator. Two simple versions of the basic model (3) are

considered in the experiments. In the Þrst version, reported in Table 1, the scalar

covariate, xt , exerts a pure location-shift effect, and the response yt is generated by the

model

yt =ayt−1 +b1xt +b2xt−1 +ut. (6)

In the second, reported in Table 2, xt exerts both location and scale effects as

yt =ayt−1 +b1xt + b2xt−1 + (cxt)ut. (7)

We employ two different distributions to generate the disturbances ut: N (0, 1) and

t-distribution with 3 degrees of freedom (t3). In all cases, we set y0 =0 and generate yt for

t=1, . . . ,n according to equations (6) and (7), and in generating yt we discarded the Þrst

100 observations, using the remaining observations for estimation. This ensures that the

results are not unduly inßuenced by the initial values of the y0 process. In the location case,

we generate the exogenous covariates, xt , using the same distribution as the innovations

ut . In the location-scale version, to avoid crossing, we generate covariates xt as χ
2
3. In the

simulations, we use a sample size of n=200, set the number of replications to 5,000, and

consider the following values for the remaining parameters: (a,b1,b2) = (0.5, 0.5, 0.5) and

c=0.2. We compare the estimators’ coefÞcients in terms of bias and root mean squared

error (RMSE).7 We study four different estimators in the Monte Carlo experiments, the

QAR proposed by Koenker and Xiao (2006), the QADL proposed in this article, the least

squares estimator (OLS), and Þnally, the least square distributed lagmodel (ADL). Finally,

we consider s∈{0.1, 0.25, 0.5, 0.75, 0.9}.
Table 1 shows bias and RMSE results of the estimators for the location-shift model.

For QAR and OLS models, we do not include the terms xt and xt−1 in the estimating equa-

tion. The results show that, as expected, omitting the variables in QAR and OLS cause

bias in estimation. However, QADL and ADL are approximately unbiased, with QADL

unbiased along the quantiles. The results show that for the quantile regression models

the RMSE is larger for extreme quantiles in both distributions. This Þnding shows evi-

dence that, in general, it is more difÞcult to estimate the variance at the extremes of the

distribution. We compare RMSE of the least squares estimators with the median quantile

regression. In the Gaussian condition, the OLS based estimators outperform the quantile

regression estimators, that is, ADL has smaller RMSEs when compared with QADL, and

OLS has smaller RMSE when compared with QAR. Finally, for the non-Gaussian case,

t3, in terms of RMSE, the median quantile regression estimators outperform their least

squares analogues. Table 2 shows bias and RMSE results of the estimates of a and b for

location-scale-shift model. In all cases, the QAR and OLS are biased and the QADL and

ADLare approximately unbiased. In this case, the results regardingRMSE are qualitatively

similar to the previous case.

7We refer the reader to Galvao et al. (2009) for a more detailed set of results on estimation, and small sample
properties (size and power) of the Wald and Kolmogorov–Smirnov tests.
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IV. Application: house price returns

There is an extensive literature on cross-sectional and time-series variation in house prices,

but this literature is marked by poor predictability. Mankiew andWeil (1989) Þnd that the

Baby Boom had a large impact on the US housing market. By 1989, they predicted a future

slow down in the house market, which was not observed.8 In fact, house prices have shown

unprecedented values over the past 10 years. Increasing house prices had also importance

in the UK. The issue of affordable housing had claimed an increasing importance in the

public debate and the uncertainty about future prices is a concern of both policy makers

and researchers.9 Moreover, the fact that housing is a major component of wealth (Banks

and Tanner, 2002, show that real state accounted for 35% of aggregate household wealth in

the UK in the 1990s) and risky assets determines that house price changes have signiÞcant

effects on aggregate consumption (see for instance Campbell and Cocco, 2007).

The evolution of house prices was extensively studied in the UK by Muellbauer and

Murphy (1997), Ortalo-Magné and Rady (1999, 2006) and Rosenthal (2006) among oth-

ers. Those authors rigorously studied the booms and busts in the UK housing market until

2000. In the past 50 years, there have been three major booms in the UK’s owner-occupied

housing market: in the early 1970s, in the late 1980s and the current housing boom. There

were also smaller booms in the 1960s and, more brießy, in the late 1970s, while the early

1990s saw a bust on an unprecedented scale. Many factors conspired to produce the house

price boom of the late 1980s. Initial debt levels were low as were real house prices, giv-

ing scope for rises in both. Income growth after the early 1980s recession was strong, as

were income growth expectations and these became more important as a result of Þnancial

liberalization, though partly offset by bigger real interest rate effects. Wealth to income

ratios grew and illiquid assets increased enhanced by Þnancial liberalization. Financial

liberalization also permitted higher gearing levels. Demographic trends were favourable

with stronger population growth in the key house buying age group. The supply of houses

grewmore slowly, with construction of social housing falling to a small fraction of its level

in the 1970s. Finally, in 1987–88 interest rates fell and the proposed abolition of property

taxes in favour of the Poll Tax gave a further impetus to valuations.

The bust in the early 1990s was the result of the reversal of most of these factors.

Interest rates rose from 1988 to 1990. The bust coincided with a general recession. Demo-

graphic trends reversed. The revolt against the Poll Tax resulted in a new property tax,

the Council Tax, being reintroduced. Debt levels and real house prices had reached very

high levels, while wealth to income ratios then fell and recently experienced rates of return

became negative and made households more cautious. Mortgage lenders tightened up their

lending criteria, in a partial reversal of Þnancial liberalization. Under these conditions, not

even the major falls in nominal interest rates that took place in the early 1990s, while real

interest rates remained high, were sufÞcient to revive UK house prices. However, the late

1990s and the new millennium showed an unprecedented increase in house prices, mostly

concentrated in the Southeast (i.e. London).

8‘Our estimates suggest that real housing prices will fall substantially – indeed, real housing prices may well reach
levels lower than those experienced at any time in the past forty years’ (p. 236).

9‘Our forecasts have not been for dramatic falls in house prices, but who knows?... anyone who thinks that they can
forecast asset prices is kidding themselves’. Rachel Lomax, Governor of Bank of England, The Guardian, London,
November 23, 2003, cited in Rosenthal (2006, p. 289).
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The conditional quantiles provide a complete picture of the distribution of house returns

conditional on past values.High quantiles correspond to unusually high conditional returns;

low quantiles correspond to busts in the conditional returns. We propose the application

of QADL to model house price returns in order to study the asymmetric behaviour of this

time series. We are particularly interested in the autoregressive behaviour of this series at

different quantiles, as well as the response to income shocks and the interest rate.

House price series are obtained from Nationwide mortgage data. Nationwide Building

Society has a long history of recording and analyzing house price data and has published

average house price information since 1952 while the quarterly data used here started in

1973. It is the 4th largest mortgage lender in the UK by stock. The series used in this

application is the average price of a representative house, UK Quarterly Index. This series

is constructed by Nationwide using mortgages that are at the approvals stage and after the

corresponding building survey has been completed. Approvals data is used as opposed to

mortgage completions since it should give an earlier indication of current trends in prices

in the residential housingmarket. In addition, properties that are not typical andmay distort

the series are also removed from the data set. The index controls for: location in the UK,

type of neighbourhood, ßoor size, property design (detached house, semi-detached house,

terraced house, bungalow, ßat, etc.), tenure (freehold/leasehold/feudal, except for ßats,

which are nearly all leasehold), number of bathrooms (1 or more than 1), type of central

heating (full, part or none), type of garage (single garage, double garage or none), number

of bedrooms (1,2,3,4 or more than 4), and whether property is new or not.

The series in levels are shown in Figure 1. Nominal prices provide a quick overview

of the magnitude of the increase in house prices. With an average value of £25,000 in

1975, the latest estimate is close to £200,000. Even when adjusting by inßation, the recent

increments are signiÞcant. The current boom in house prices can be seen by the continuous

growth in the past 12 years. Overall, all series show a similar performance in terms of

business cycle patterns. The series show three different cycles over the past 35 years with

spikes in 1980, 1990 and possibly in 2007. Interest rates are currently at a record low. Real

house price returns and real GDP growth series are shown in Figure 2.

In the long run, we expect that house price variations depend on its past values and

some key economic variables. Based on Muellbauer and Murphy (1997), we propose an

autoregressive speciÞcation of quarterly house price returns in UK using the quantile auto-

regressive distributed lag model. As additional covariates we use the Bank of England

interest rates, real GDP growth and dummy variables for quarter effects. The proposed

model is given by

Qrt
(

s |ℑt

)

=l(s)+

p
∑

j=1

aj(s)rt−j +

q1
∑

k=0

ck(s)gt−k +

q2
∑

l=1

hl(s)it−l

+b1(s)D1, t +b2(s)D2, t +b3(s)D3, t ,

where rt is the real quarterly price return in period t, obtained as the difference in the

natural logarithm of house prices (deßated by the consumer price index), gt is the growth

rate of real GDP, it is the interest rates, andD represent dummy variables for quarter effects.

Note that when we exclude the covariates and the quarter dummy variables, we have the

QARmodel.Augmented Dickey–Fuller (ADF) tests are applied to these variables to check
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Figure 1. Time series

for unit roots. The rt series has an ADF value of −3.91 with a corresponding p-value for

the null hypothesis of unit root of 0.012. it has an ADF value of −3.70 with a p-value

of 0.026. gt has an ADF value of −3.89 with a p-value of 0.017. Therefore, for all the

variables we reject the unit root null hypothesis.

We Þrst estimate the QAR model using Koenker and Xiao (2006) methodology. We

use the BIC criteria as developed in Machado (1993) for s=0.5 to determine the number

of lags, and this suggests using a QAR model with p=1. This is in line with Rosenthal

(2006) Þndings that suggest that 2- to 3-month lags are enough to model monthly house

prices.Although not reported, we also apply the BIC criteria for a range of s∈ [0.05, 0.95],

and in general, the model with one lag is selected, which determines that the selection

for the median may be appropriate for the whole distribution. Next, we perform the QAR

estimation for several quantiles and the results appear in Figure 3 (QAR(1) alpha) that plots

the coefÞcient estimates with 95% conÞdence interval. The results show a strong asymme-

try in the lag response. Unit-root like behaviour is observed for high quantiles. However,

when we perform Koenker and Xiao (2004) QR unit-root tests for all s ∈ [0.05, 0.95],

we always reject the null hypothesis of unit-roots. Then, overall, the QAR(1) process is

globally stationary.

Next, we consider our suggested QADL model. Applying a similar BIC criteria we

select p=1, q1 =0 for GDP, i.e. the contemporaneous effect of GDP, and q2 =0 for the

interest rate (although we exclude the contemporaneous effect, that is, we consider the

interest rate lagged one quarter only). The estimates shown in Figure 3 (QADL(1,0) alpha)

suggests that the model still shows unit-root-like behaviour only in the high extreme quan-

tiles. However, when we perform Galvao (2009) QR unit-root tests for all s∈ [0.05, 0.95]

we always reject the null hypothesis of unit-roots. That is, the model seems to show global
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Figure 2. Time series

stationarity with higher persistence in unusually high shocks. Note that the inclusion of

the covariates determines a more homogeneous increasing behaviour of the a-coefÞcients

along different quantiles than that observed in the QAR model.

The interest rate has a negative impact on house price returns, although only statistically

signiÞcant for low quantiles (see Figure 3, QADL(1,0) theta). In other words, this variable

may have an effect to prevent busts, but it may not deter house price booms. Therefore,

the policy followed by the Bank of England of cutting the interest rate to prevent a house

price collapse may have the desired effect. AKolmogorov–Smirnov test of the hypothesis

that sups∈T h1(s)=0 gives a KS value of 12.8. Looking at Andrews (1993, p. 840) the

critical values are 8.19, 9.84, 13.01 for 10%, 5% and 1% signiÞcance levels respectively.

Therefore, the interest rate has an effect different from zero at the 5% signiÞcance level.

Real GDP growth has a larger impact on low and high quantiles than for medium

quantiles (see Figure 3, QADL(1,0) gamma). For low quantiles, this is interpreted as the

fact that GDP growth reactivates the housing market when returns are low, while it might

be contributing to house prices’ busts (as that in the early 1990s). Moreover, it contributes

to sustaining house prices increments. In other words, periods of unusually conditional

high returns are very responsive to GDP growth. Note that the estimated coefÞcient for

very high quantiles is greater than 1, although not statistically different from this value

except for a few quantiles. Poterba (1991) and Capozza et al. (2002) among others, provide

evidence on the asymmetric responses of house prices to income shocks. The QADL esti-

mates present this effect of house prices to income shocks, but restricted to high quantiles.

A Kolmogorov–Smirnov test of the hypothesis that sups∈T c0(s)=0 gives a KS value of

33.1, which by the critical values discussed above show that the effect of GDP is not zero

(as expected from the Þgure). However, the hypothesis that sups∈T c0(s)=1 gives KS= 4.1.

Then, overall, the effect of GDP growth on house price returns is not different from 1.
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Figure 3. CoefÞcient estimates

In summary, the application illustrates the usefulness of the QADL process to model

asymmetric behaviour in time series. Of particular importance are the asymmetries in the

slope of the lagged dependent variable and other covariates in both extreme low and high

quantiles. In this case, the conditional mean may be a misleading parameter in periods

of extremely low and high conditional returns, which are those when policymakers are

keener to intervene or to predict future behaviour.

V. Conclusion

We have developed a quantile autoregression distributed lag model (QADL). Quantile

regression methods provide a framework for robust estimation and inference and allow

one to explore a variety of forms of conditional heterogeneity under less compelling distri-

butional assumptions. The proposed model is able to accommodate exogenous covariates

in the QAR model. Monte Carlo simulations are conducted to evaluate the Þnite sample

performance of the QADL estimator. It is shown that the simple quantile autoregression

estimator is severely biased by omitting exogenous variables, while the QADL is generally

unbiased. In addition, theQADLapproach outperforms the ordinary augmented distributed

lag approach in terms of root mean square error for non-Gaussian heavy tail distributions.

We illustrate the QADL model with an application to quarterly house price returns

data in the UK. The results show that house price returns have an asymmetric autoregres-

sive behaviour, and that real GDP growth and interest rates have an asymmetric impact

on house prices variations along the quantiles. In addition, the results suggest that unit

root behaviour is present only in the high extreme quantiles. Thus, the model seems to

show global stationarity with some persistence in unusually high returns. The inclusion
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of covariates determines a more homogeneous increasing behaviour of the autoregressive

coefÞcients along different quantiles than that observed in the QAR model, but maintains

the persistence in the high quantiles. The interest rate has a negative impact on house

prices, mostly signiÞcant for low quantiles. This can be interpreted as the fact that interest

rates have an effect on stimulating the demand in the real estate market when returns are

low, but it does not deter house prices booms. In addition, there is evidence that the impact

of GDP on house prices presents an asymmetric persistence and it is stronger for low and

high quantiles. For low quantiles, this is interpreted as the fact that GDPgrowth reactivates

the real estate market when returns are low, while it might be contributing to house prices’

busts. Moreover, it contributes to sustaining house prices booms. In other words, periods

of unusually high returns are very responsive to GDP growth.

Final Manuscript Received: October 2011
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