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a b s t r a c t

This paper studies panel quantile regression models with individual fixed effects. We formally establish
sufficient conditions for consistency and asymptotic normality of the quantile regression estimator when
the number of individuals, n, and the number of time periods, T , jointly go to infinity. The estimator is
shown to be consistent under similar conditions to those found in the nonlinear panel data literature.
Nevertheless, due to the non-smoothness of the objective function, we had to impose a more restrictive
condition on T to prove asymptotic normality than that usually found in the literature. The finite sample
performance of the estimator is evaluated by Monte Carlo simulations.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Quantile regression (QR) for panel data has attracted consid-
erable interest in both the theoretical and the applied literature.
It allows us to explore a range of conditional quantiles, thereby
exposing a variety of forms of conditional heterogeneity, and to
control for unobserved individual effects. Controlling for individ-
ual heterogeneity via fixed effects, while exploring heterogeneous
covariate effects within the QR framework, offers a more flexible
approach to the analysis of panel data than that afforded by the
classical Gaussian fixed and random effects estimation.

This paper focuses on the estimation of the common parame-
ters in a QR model with individual effects. We refer the resulting
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estimator as the fixed effects quantile regression (FE-QR) estima-
tor. Unfortunately, the FE-QR estimator is subject to the incidental
parameter problem (Neyman and Scott (1948), Lancaster (2000),
for a review) and will be inconsistent if the number of individuals
n goes to infinity while the number of time periods T is fixed. It
is important to note that, in contrast to mean regression, to our
knowledge, there is no general transformation that can suitably
eliminate the individual effects in the QR model. Therefore, given
these difficulties, in the QR panel data literature, it is usual to allow
T to increase to infinity to achieve asymptotically unbiased estima-
tors. We follow this approach employing a large n, T asymptotics.
In the nonlinear and quantile regression literature, the large panel
data asymptotics is used in an attempt to cope with the incidental
parameter problem.

The incidental parameter problemhas been extensively studied
in the recent nonlinear panel data literature. Among them, Hahn
and Newey (2004) studied the maximum likelihood estimation
of a general nonlinear panel data model with individual effects.
They showed that the maximum likelihood estimator (MLE) has
a limiting normal distribution with a bias in the mean when n
and T grow at the same rate, and proposed several bias correction
methods to the MLE. Note that since they assumed that likelihood
functions are smooth, while the objective function of QR is not,
their results are not directly applicable to the QR case.

Koenker (2004) introduced a novel approach for the estimation
of a QR model for panel data. He argued that shrinking the
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individual parameters toward a common value improves the
performance of the common parameters’ estimates, and proposed
a penalized estimation method where the individual parameters
are subject to the ℓ1 penalty. He also studied the asymptotic
properties of the (unpenalized) FE-QR estimator, claiming its
asymptotically normality when na/T → 0 for some a > 0.
We provide an alternative formal approach that offers a clearer
understanding of the asymptotic properties of the FE-QR estimator
and the related regularity conditions to establish these properties.

The goal of this paper is to study the asymptotic properties
of the FE-QR estimator when n and T jointly go to infinity
and formally establish sufficient conditions for consistency and
asymptotic normality of the estimator. We show that the FE-QR
estimator is consistent under similar conditions to those found
in the nonlinear panel data literature. We are required to impose
a more restrictive condition on T (i.e., n2(log n)3/T → 0) to
prove asymptotic normality of the estimator than that found in the
literature. This reflects the fact that the rate of the remainder term
of the Bahadur representation of the FE-QR estimator is of order
(T/ log n)−3/4. The slower convergence rate of the remainder term
is due to the non-smoothness of the scores. It is important to note
that the growth condition on T for establishing

√
nT -consistency of

the FE-QR estimator (or other fixed effects estimators in general) is
determined so that it ‘‘kills’’ the remainder term. Thus, the rate of
the remainder term is essential in the asymptotic analysis of the
fixed effects estimation when n and T jointly go to infinity. The
theoretical contribution of this paper is the rigorous study of the
rate of the remainder term in the Bahadur representation of the
FE-QR estimator, which we believe is far from trivial.

From a technical point of view, the proof of asymptotic
normality of the FE-QR estimator is of independent interest.
Because of the non-differentiability of the objective function, the
stochastic expansion technique of Li et al. (2003) is no longer
applicable to the asymptotic analysis of the FE-QR estimator.
Instead, we adapt the Pakes and Pollard (1989) approach for
proving asymptotic normality of the estimator. In addition, we
makeuse of some inequalities from the empirical process literature
(such as Talagrand’s inequality) to establish the convergence rate
of the remainder term in the Bahadur representation of the FE-QR
estimator. These inequalities significantly simplify the proof. Our
results are also extended to the case where temporal dependence
is allowed.

From an applied perspective, however, the required rate
condition for asymptotic normality might be seen as a negative
result. The restrictive condition on T is not found in most of the
panel data applications of interest. However, the paper highlights
that special attention needs to be taken with respect to formal
asymptotic study in the QR panel data (see the discussion in
Section 3.2). In addition, it shows that small sample simulations
are an important tool to study the estimator’s performance.

We carried out Monte Carlo simulations to study the finite
sample performance of the FE-QR estimator. The simulation study
highlights some cases where the FE-QR estimator has large bias in
panels with large n/T . In addition, the results show that, on the
one hand, the estimated standard errors approximate the true ones
very closely as the sample size increases, but on the other hand,
the coverage probability of the asymptotic Gaussian confidence
interval may be inaccurate when n/T is large. This is probably
due to the fact that the variance of the FE-QR estimator decreases
when nT increases while the bias decreases when T increases but
is independent of n, so that the centering of the confidence interval
will be severely distorted when n/T is large.

We now review the literature related to this paper. Lamarche
(2010) studied Koenker’s (2004) penalization method and dis-
cussed an optimal choice of the tuning parameter. Canay (2008)
proposes a two-step estimator of the common parameters. The dif-
ference is that in his model, each individual effect is not allowed to
change across quantiles. Graham et al. (2009) showed that when
T = 2 and the explanatory variables are independent of the er-
ror term, the FE-QR estimator does not suffer from the incidental
parameter problem. However, their argument does not apply to
the general case. Rosen (2009) addressed a set identification prob-
lem of the common parameters when T is fixed. Chernozhukov
et al. (2009) considered identification and estimation of the quan-
tile structural function defined in Imbens and Newey (2009) of
a nonseparable panel model with discrete explanatory variables.
They studied bounds of the quantile structural function when T is
fixed and the asymptotic behavior of the bounds when T goes to
infinity.

This paper is organized as follows. In Section 2, we introduce a
QRmodel with individual fixed effects and the FE-QR estimator we
consider. In Section 3, we discuss the asymptotic properties of the
FE-QR estimator. Proofs of the theorems in Section 3 are given in
Appendix. In Section 4, we report a simulation study for assessing
the finite sample performance of the FE-QR estimator. In Section 5
we extend the asymptotic results of Section 3 to the dynamic case
where we allow for dependence across time. Finally, in Section 6
we present some discussion on the paper.

2. Quantile regression with individual effects

In this paper, we consider a QR model with individual effects

Qτ (yit |xit , αi0(τ )) = αi0(τ )+ x′

itβ0(τ ) (2.1)

where τ ∈ (0, 1) is a quantile index, yit is a dependent variable,
xit is a p dimensional vector of explanatory variables, αi0(τ ) is the
i-th individual effect, and Qτ (yit |xit , αi0(τ )) is the conditional τ -
quantile of yit given (xit , αi0(τ )). In general, each αi0(τ ) and β0(τ )
can depend on τ , but we assume τ to be fixed throughout the
paper and suppress such a dependence for notational simplicity,
such that αi0(τ ) = αi0 and β0(τ ) = β0.

1 We make no parametric
assumption on the relationship between αi0 and xit . Throughout
the paper, the number of individuals is denoted by n and the
number of time periods is denoted by T = Tn that depends on n. In
what follows, we omit the subscript n of Tn.

We consider the fixed effects estimation of β0, which is imple-
mented by treating each individual effect also as a parameter to
be estimated. Throughout the paper, as in Hahn and Newey (2004)
and Fernandez-Val (2005), we treat αi0 as fixed by conditioning on
them.2 We consider the estimator (α̂, β̂) defined by

(α̂, β̂) := argmin
α,β

1
nT

n
i=1

T
t=1

ρτ (yit − αi − x′

itβ), (2.2)

where α := (α1, . . . , αn)
′ and ρτ (u) := {τ − I(u ≤ 0)}u is the

check function (Koenker and Bassett, 1978). Note that α implicitly
depends on n. We call β̂ the fixed effects quantile regression
(FE-QR) estimator of β0. The optimization for solving (2.2) can
be very large depending on n and T . However, as Koenker
(2004) observed, in typical applications, the design matrix is very
sparse. Standard sparse matrix storage schemes only require the

1 In our model, the individual effects include the intercept term and the
intercept term depends on the quantile. Thus, the individual effects depend on the
quantile. Koenker (2004) used a different approach, where the individual specific
intercepts are restricted to be the same across the quantiles. This procedure can
be implemented using weighted QR, as proposed initially by Koenker (1984). It is
important to note that both models are identical for our purposes of estimating a
single fixed quantile.
2 This treatment is similar to the interpretation of non-stochastic regressors.
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space for the non-zero elements and their indexing locations.
This considerably reduces the computational effort and memory
requirements.

It is important to note that in the QR model, there is no gen-
eral transformation that can suitably eliminate the individual ef-
fects. This intrinsic difficulty has been recognized by Abrevaya
and Dahl (2008), among others, and was clarified by Koenker and
Hallock (2000). They remarked that ‘‘Quantiles of convolutions of
random variables are rather intractable objects, and preliminary
differencing strategies familiar from Gaussian models have some-
times unanticipated effects (p. 19)’’.

3. Asymptotic theory: static case

3.1. Main results

In this section, we investigate the asymptotic properties of the
FE-QR estimator.

We first consider the consistency of (α̂, β̂). We say that α̂ is
weakly consistent if α̂i converges in probability to αi0 uniformly
over 1 ≤ i ≤ n, that is, max1≤i≤n |α̂i − αi0|

p
→ 0. We introduce

some regularity conditions that ensure the consistency of (α̂, β̂).

(A1) {(yit , xit), t ≥ 1} is independent and identically distributed
(i.i.d.) for each fixed i and independent across i.

(A2) supi≥1 E[∥xi1∥2s
] < ∞ for some real s ≥ 1.

The distribution of (yit , xit) is allowed to depend on i. Put uit :=

yit − αi0 − x′

itβ0. Condition (A1) implies that {(uit , xit), t ≥ 1} is
i.i.d. for each fixed i and independent across i. Let Fi(u|x) denote the
conditional distribution function of uit given xit = x. We assume
that Fi(u|x)has density fi(u|x). Let fi(u)denote themarginal density
of uit .

(A3) For each δ > 0,

ϵδ := inf
i≥1

inf
|α|+∥β∥1=δ

E

 α+x′i1β

0
{Fi(s|xi1)− τ }ds


> 0, (3.1)

where ∥ · ∥1 stands for the ℓ1 norm.3

Condition (A1) is the same as Condition 1 (i) of Fernandez-Val
(2005). Hahn and Newey (2004) also assume temporal and cross
sectional independence. In condition (A1) we exclude temporal
dependence to focus on the simplest case first and to highlight
the difficulties arising from the FE-QR estimator. The present
results are extended below (Section 5) to the dependent case
under suitable mixing conditions as in Hahn and Kuersteiner
(2004).4 Condition (A2) corresponds to the moment condition of
Fernandez-Val (2005, p. 12). Condition (A3) is an identification
condition of (α0,β0) and corresponds to Condition 3 of Hahn and
Newey (2004). In fact, it is sufficient for consistency of (α̂, β̂)
that (3.1) is satisfied for any sufficiently small δ > 0. Recall
that Fi(0|xi1) = τ . Under suitable integrability conditions, the
expectation in (3.1) can be expanded as (α,β′)Ωi(α,β

′)′ + o(δ2)
for |α| + ∥β∥1 = δ uniformly over i ≥ 1 as δ → 0, where

3 There is no significant role in the ℓ1 norm, as any norm on a fixed dimensional
Euclidean space is equivalent. The ℓ1 norm is used just to avoid the notation like
∥(αi − αi0,β

′
− β′

0)
′
∥.

4 The independence assumption is usedmainly to apply some standard stochastic
inequalities; our results are extended below to the dependent case by replacing
these stochastic inequalities by those that hold under suitable dependence
conditions. We shall mention that the condition on T for the mean-zero asymptotic
normality, which is given in Theorem 3.2, is not weakened when the observations
are temporally dependent.
Ωi := E[fi(0|xi1)(1, x′

i1)(1, x
′

i1)
′
]. If the minimum eigenvalue ofΩi

is bounded away from zero uniformly over i ≥ 1, there exists a
positive constant δ0 such that for 0 < δ ≤ δ0, (3.1) is satisfied.
The following result states consistency. The proof is given in the
Appendix.

Theorem 3.1. Assume that n/T s
→ 0 as n → ∞, where s is given

in condition (A2). Then, under conditions (A1)–(A3), (α̂, β̂) is weakly
consistent.

Theorem 3.1 is not covered by Hahn and Newey (2004) and
Fernandez-Val (2005) because they assumed that the parameter
spaces of αi0 and β0 are compact. In our problem, due to
the convexity of the objective function, we can remove the
compactness assumption of the parameter spaces. The condition
on T in Theorem 3.1 is the same as that in Theorems 1–2 of
Fernandez-Val (2005). If supi≥1 ∥xi1∥ ≤ M (a.s.) for some positive
constant M , then the conclusion of the theorem holds when
log n/T → 0 as n → ∞. See Remark A.1 after the proof of
Theorem 3.1 for details.

Next, we derive the limiting distribution of β̂. To this end, we
consider another set of conditions.

(B1) There exists a constantM such that supi≥1 ∥xi1∥ ≤ M (a.s.).
(B2) (a) For each i, fi(u|x) is continuously differentiable with

respect to u for each x and let f (1)i (u|x) := ∂ fi(u|x)/∂u; (b)
there exist constants Cf and Lf such that fi(u|x) ≤ Cf and
|f (1)i (u|x)| ≤ Lf uniformly over (u, x) and i ≥ 1; (c) fi(0) is
bounded from below by some positive constant independent
of i.

(B3) Put γ i := E[fi(0|xi1)xi1]/fi(0) and Γn := n−1n
i=1 E[fi(0|

xi1)xi1(x′

i1 − γ ′

i)]. (a) Γn is nonsingular for each n, and the
limit Γ := limn→∞ Γn exists and is nonsingular; (b) the limit
V := limn→∞ n−1n

i=1 E[(xi1 − γ i)(xi1 − γ i)
′
] exists and is

nonsingular.

Condition (B1) is assumed in Koenker (2004). This condition is
used to ensure the ‘‘asymptotic’’ first order condition displayed in
Eq. (A.7) in the proof of Theorem 3.2. Condition (B2) imposes some
restrictions on the conditional densities and is standard in the QR
literature (cf. Condition (ii) of Angrist et al. (2006, Theorem 3).
Condition (B3) is concernedwith the asymptotic covariancematrix
of β̂. Condition (B3) (a) implies that theminimum eigenvalue of Γn
is bounded away from zero uniformly over n ≥ 1.

The term γ i is the projection of xi1 onto the constant term 1
with respect to the norm ∥V∥

2
= E[fi(0|xi1)V 2

] as E[fi(0|xi1)(xi1 −

γ i)] = 0, and has the same role as the mean E[xi1] in the mean
regression case.5More formally, the term γ i comes from the fact
that the lower p× (n+ p) part of the inverse Hessian matrix of the
expectation of the QR objective function in (2.2) evaluated at the
truth is given by Γ −1

n [−γ1 · · · − γn Ip].
We now state themain theorem of the paper. The proof is given

in the Appendix.

Theorem 3.2. Assume conditions (A1), (A3) and (B1)–(B3). If
log n/T → 0 as n → ∞ but T grows at most polynomially in n,
then β̂ admits the expansion

β̂ − β0 + op(∥β̂ − β0∥)

= Γ −1
n


1
nT

n
i=1

T
t=1

{τ − I(uit ≤ 0)}(xit − γ i)


+Op{(T/ log n)−3/4

}. (3.2)

5 The norm ∥V∥
2

= E[fi(0|xi1)V 2
] is a Fisher-like norm to the QR objective

function, as E[fi(0|xi1)V 2
] = d2E[ρτ (ui1 − tV )]/dt2 .
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If moreover n2(log n)3/T → 0, then we have
√
nT (β̂ − β0)

d
→N{0, τ (1 − τ)Γ −1VΓ −1

}.

The restriction that T grows at most polynomially in n is only
to simplify the exposition, as it ensures log T = O(log n). We
shall stress that the Bahadur representation (3.2) is valid without
the condition that n2(log n)3/T → 0. This condition is used only
to ‘‘kill’’ the remainder term (the second term on the right side
of (3.2)). Some other specific comments are listed in the next
subsection.

We now turn to estimate the asymptotic covariance matrix.
The estimation of Γ and V depends on the conditional densities,
and therefore, they are not directly estimated by their sample
analogues because the conditional densities are unknown. We
consider the kernel estimation of thematricesΓ andV . LetK :R →

R denote a kernel function (probability density function). Let {hn}

denote a sequence of positive numbers (bandwidths) such that
hn → 0 as n → ∞. We use the notation Khn(u) = h−1

n K(u/hn).
Let ûit = yit − α̂i − x′

it β̂, which can be viewed as an ‘‘estimator’’ of
uit . It is seen that Γ and V can be estimated by

Γ̂ :=
1
nT

n
i=1

T
t=1

Khn(ûit)xit(xit − γ̂ i)
′,

V̂ :=
1
nT

n
i=1

T
t=1

(xit − γ̂ i)(xit − γ̂ i)
′,

where

f̂i :=
1
T

T
t=1

Khn(ûit), γ̂ i :=
1

f̂iT

T
t=1

Khn(ûit)xit .

To guarantee the consistency of Γ̂ and V̂ , we assume the
following.

(C1) The kernelK is continuous, bounded andof bounded variation
on R.

(C2) hn → 0 and log n/(Thn) → 0 as n → ∞.

Condition (C1) is an assumption we only make on the kernel.
Most standard kernels such as Gaussian and Epanechnikov kernels
satisfy condition (C1). Although the uniform kernel does not satisfy
condition (C1) as it is not continuous, the continuity of the kernel is
used only to ensure that the class of functions {(u, x) → K((u−α−

x′β)/hn): (α,β) ∈ Rp+1
} is pointwisemeasurable, and it is verified

that the uniform kernel also ensures this property.6 Condition (C2)
is a restriction on the bandwidth hn. The bandwidth hn needs to be
slightly slower than T−1.

Proposition 3.1. Assume conditions (A1), (A3), (B1)–(B3) and
(C1)–(C2). If T grows at most polynomially in n, we have Γ̂

p
→Γ

and V̂
p

→ V .

We shall mention that the consistency of Γ̂ and V̂ only requires
the consistency of (α̂, β̂), which is guaranteed by conditions
(A1), (A3), (B1) and (C2) (observe that condition (C2) implies
that log n/T → 0). It is now straightforward to see that
the asymptotic covariance matrix of β̂, τ(1 − τ)Γ −1VΓ −1, is
consistently estimated by τ(1 − τ)Γ̂ −1V̂ Γ̂ −1.

6 See Appendix B for the definition of the pointwise measurability.
3.2. Discussion on Theorem 3.2

In this subsection, we give some discussion on Theorem 3.2.
1. Relation to Hahn and Newey (2004): Eqs. (10) and (17) in

Hahn andNewey (2004) show that theMLE of the common param-
eters for smooth likelihood functions admits the representation

θ̂ − θ0 =


1
n

n
i=1

Ii

−1 
1
nT

n
i=1

T
t=1

Uit


+

1
2T
θ ϵϵ(0)

+
1

6T 3/2
θ ϵϵϵ(ϵ̃), (3.3)

where θ̂ , θ0, Ii,Uit , θ
ϵϵ(·) and θ ϵϵϵ(·) are defined in Hahn and

Newey (2004) and ϵ̃ is in [0, T−1/2
]. Under suitable regularity

conditions, θ ϵϵ(0) is Op(1) and θ ϵϵϵ(ϵ) is Op(1) uniformly over
ϵ ∈ [0, T−1/2

], which implies that the last two terms on the right
side of Eq. (3.3) are Op(T−1) and Op(T−3/2), respectively.7

The difference from their result is that the rate of the remainder
term of the FE-QR estimator (the second term on the right side
of (3.2)) is roughly T−3/4, which is significantly slower than T−1.
Hahn and Newey (2004) assumed that the scores are sufficiently
smooth with respect to the parameters. On the other hand, the
scores for problem (2.2), which are formally defined in Appendix,
are not differentiable (in fact they consist of indicator functions).
This means that, in contrast to estimators with smooth objective
functions that have been studied in the literature such as Li
et al. (2003), Hahn and Newey (2004) and Fernandez-Val (2005),
the Taylor-series methods of asymptotic distribution theory do
not apply to the FE-QR estimator, which greatly complicates the
analysis of its asymptotic distributional properties. The difficulty
is partly explained by the fact that, as Hahn and Newey (2004)
observed, the first order asymptotic behavior of the (smooth) MLE
of the common parameters can be affected by the second order
behavior of the estimators of the individual parameters, while the
second order behavior of QR estimators is non-standard and rather
complicated (Arcones, 1998; Knight, 1998). In particular, for cross-
sectional models, the second order of the QR estimator is n−3/4 and
not n−1 when the sample size is n. We shall mention that our proof
strategy leads to the standard condition (i.e., n/T → 0) up to the
log term for the mean-zero asymptotic normality when the scores
are smooth (see the remark after the proof of Theorem 3.2 for the
technical reason why the slower rate appears).

However, it should be pointed out that although the above rate
of the remainder term is the best one (up to the log term) that we
could achieve, there might be a room for improvement on the rate,
which means that our condition for the asymptotic normality is
only a sufficient one. It is an open question whether the mean-
zero asymptotic normality holds under the standard assumption
that n/T → 0.

2. Relation to Koenker (2004): Koenker (2004) claimed asymp-
totic normality of the FE-QR estimator under similar conditions to
ours except that he assumed that na/T → 0 for some a > 0. We
believe that our proof of asymptotic normality offers a clearer un-
derstanding of the asymptotic properties of the FE-QR estimator
than that in his Theorem 1. Actually, in his proof, a formal proof
for

√
nT -consistency of β̂ is not offered, and a justification for the

second expression of Rmn in p. 82 when n and m (in his notation)
jointly go to infinity is not presented.

3. Relation to He and Shao (2000): He and Shao (2000) studied
a generalM-estimation with diverging number of parameters that

7 In fact, Hahn and Newey (2004) showed that θ ϵϵ(0) converges in probability
to some constant vector, which will contribute to the bias in the asymptotic
distribution when n and T grow at the same rate.
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Table 1
Bias of β̂(τ ). Location shift model.

τ n/T ϵit
i.i.d.
∼ N(0, 1) ϵit

i.i.d.
∼ χ2

3 ϵit
i.i.d.
∼ Cauchy

5 10 50 100 5 10 50 100

0.25 25 0.003 0.000 0.000 0.000 0.004 0.003 0.001 0.000 −0.002 −0.002 −0.001 −0.001
[0.056] [0.037] [0.016] [0.011] [0.075] [0.048] [0.021] [0.015] [0.122] [0.075] [0.031] [0.023]

50 0.000 0.000 0.000 0.000 0.003 0.002 0.000 0.000 −0.004 −0.001 −0.001 −0.000
[0.040] [0.026] [0.011] [0.008] [0.051] [0.034] [0.015] [0.011] [0.080] [0.050] [0.022] [0.016]

100 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 −0.001 0.000 −0.000
[0.028] [0.018] [0.008] [0.006] [0.035] [0.023] [0.010] [0.007] [0.055] [0.035] [0.016] [0.011]

200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.001 0.000 −0.000 0.000
[0.019] [0.013] [0.006] [0.004] [0.024] [0.017] [0.007] [0.005] [0.037] [0.025] [0.011] [0.008]

0.50 25 0.000 0.000 0.000 0.000 0.006 0.002 0.001 0.000 0.001 0.000 −0.000 0.000
[0.051] [0.035] [0.015] [0.010] [0.099] [0.073] [0.032] [0.022] [0.087] [0.053] [0.019] [0.013]

50 0.000 0.000 0.000 0.000 0.004 0.002 0.000 0.000 −0.001 0.001 −0.000 0.000
[0.036] [0.025] [0.011] [0.007] [0.068] [0.051] [0.022] [0.015] [0.059] [0.036] [0.014] [0.009]

100 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 −0.000 0.000 −0.000
[0.025] [0.017] [0.007] [0.005] [0.047] [0.035] [0.015] [0.011] [0.040] [0.025] [0.009] [0.007]

200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.000 0.000 0.000 0.000
[0.017] [0.012] [0.005] [0.004] [0.034] [0.025] [0.011] [0.008] [0.028] [0.018] [0.007] [0.005]

0.75 25 −0.001 −0.001 0.000 0.000 0.005 0.004 0.001 0.000 0.002 0.003 0.001 0.000
[0.056] [0.037] [0.016] [0.011] [0.154] [0.105] [0.048] [0.034] [0.121] [0.074] [0.031] [0.022]

50 −0.001 0.000 0.000 0.000 0.003 0.001 0.000 0.000 −0.001 0.002 0.000 0.000
[0.039] [0.026] [0.011] [0.008] [0.106] [0.073] [0.034] [0.024] [0.080] [0.051] [0.022] [0.016]

100 −0.001 0.000 0.000 0.000 −0.001 −0.001 0.000 0.000 0.001 0.000 0.000 0.000
[0.028] [0.018] [0.008] [0.006] [0.073] [0.051] [0.024] [0.017] [0.054] [0.035] [0.015] [0.011]

200 0.000 0.000 0.000 0.000 −0.001 −0.001 0.000 −0.001 −0.000 0.000 0.000 0.000
[0.020] [0.013] [0.005] [0.004] [0.052] [0.037] [0.017] [0.012] [0.037] [0.025] [0.011] [0.008]

Notes: Monte Carlo experiments based on 5000 repetitions. Standard deviations in brackets.
allows for non-smooth objective functions. It is interesting to note
that their Corollary 3.2 shows that the smoothness of scores is
crucial for the growth condition of the number of parameters
in asymptotic distribution theory of M-estimators. However, it
should be pointed out that our Theorem 3.2 is not derived from
their result because of the specific nature of the panel data
problem. The formal problem to apply their result is that the
convergence rate of α̂i is different from that of β̂. To avoid this,
make a reparametrization θ = (n−1/2α′,β′)′ and put zit :=

(n1/2e′

i, x
′

it)
′, where ei is the i-th unit vector in Rn. Then, the current

problem is under the framework of He and Shao (2000) with xi =

(yit , zit),m = (n + p), p = (n + p), n = nT , θ = θ and
ψ(xi, θ) = {τ − I(yit ≤ z ′

itθ)}zit .
8 Although conditions (C0)–(C3)

may be achieved in this case, it is difficult to obtain a tight bound
of A(n,m) in conditions (C4) and (C5) of their paper. If we use the
same reasoning as in Lemma 2.1 of He and Shao (2000), A(n,m) is
bounded by a constant times n3/2T 1/2 (in our notation), but if we
use this bound, the condition on T implied by Theorem 2.2 of He
and Shao (2000) will be such that n3(log n)2/T → 0.

4. On the proof of Theorem 3.2: The proof of Theorem 3.2 is of
independent interest. The proof proceeds as follows. It is based
on the method of Pakes and Pollard (1989), but requires some
extra efforts. The first step is to obtain certain representations of
α̂i − αi0 by expanding the first n elements of the scores. Plugging
them into the expansion of the last p elements of the scores, we
obtain a representation of β̂ −β0 (see (A.5)). The remaining task is
to evaluate the remainder terms in the representation of β̂ − β0,
which corresponds to establishing the stochastic equicontinuity
condition in Pakes and Pollard (1989). However, since the number
of parameters goes to infinity as n → ∞, the ‘‘standard’’ empirical
process argument such as that displayed in their paper will not
suffice to show this. In order to establish the convergence rate
of the remainder terms, we make use of some empirical process
techniques such as celebrated Talagrand’s (1996) inequality, which
significantly simplify the proof.

8 The left sides correspond to the notation of He and Shao (2000) and the right
sides correspond to our notation.
4. Monte Carlo

We investigate the finite sample performance of the FE-QR
estimator. Two simple versions of model (2.1) are considered in
the simulation study:

1. Location shift model: yit = ηi + xit + ϵit ;
2. Location-scale shift model: yit = ηi + xit + (1 + γ xit)ϵit ,

where xit = 0.3ηi + zit , zit ∼ i.i.d. χ2
3 , ηi ∼ i.i.d. U[0, 1] and ϵit ∼

i.i.d. F with F = N(0, 1), χ2
3 or Cauchy. In the location shift model,

αi0 = αi0(τ ) = ηi + F−1(τ ) and β0(τ ) = 1, while in the location-
scale shift model, αi0 = αi0(τ ) = ηi + F−1(τ ) and β0 = β0(τ ) =

1 + γ F−1(τ ). We consider cases where n ∈ {25, 50, 100, 200},
T ∈ {5, 10, 50, 100} and τ ∈ {0.25, 0.50, 0.75}. For the location-
scale shift model we use γ ∈ {0.5, 1}.

Tables 1, 4 and 7 report the bias and the standard deviation of
the FE-QR estimator. Tables 2, 5 and 8 report the average of the
estimated standard error (together with its standard deviation)
described in Proposition 3.1. Finally, the empirical coverage
probability of the asymptotic Gaussian confidence interval at the
95% nominal level is constructed using this estimated standard
error (Tables 3, 6 and 9). The empirical coverage probability is also
computed. The number of Monte Carlo repetitions is 5000 in all
cases.

4.1. Bias

The performance of the FE-QR estimator is evaluated first by
its bias. Tables 1, 4 and 7 report the results for the location shift
and location-scale shift (γ = 0.5, 1) models, respectively. For
the median, the results are in line with those of Koenker (2004),
where in both models the FE-QR estimator has small bias and
standard deviation in small samples. However, there are noticeable
differences for the first and third quartiles. In the location shift
model, the bias is small in every case and the standard errors
decrease monotonically as either n or T increases. In the location-
scale shift model, however, both bias and standard errors are large
for small T . In particular, the bias is considerable in the Cauchy and
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Table 2
Estimated standard errors of β̂(τ ). Location shift model.

τ n/T ϵit
i.i.d.
∼ N(0, 1) ϵit

i.i.d.
∼ χ2

3 ϵit
i.i.d.
∼ Cauchy

5 10 50 100 5 10 50 100

0.25 25 0.061 0.042 0.016 0.011 0.122 0.078 0.026 0.017 0.132 0.085 0.030 0.021
[0.013] [0.006] [0.002] [0.001] [0.027] [0.012] [0.002] [0.001] [0.040] [0.018] [0.004] [0.002]

50 0.040 0.028 0.012 0.008 0.076 0.049 0.017 0.011 0.083 0.056 0.021 0.015
[0.007] [0.004] [0.001] [0.000] [0.012] [0.006] [0.001] [0.001] [0.018] [0.009] [0.002] [0.001]

100 0.028 0.019 0.008 0.006 0.049 0.032 0.011 0.008 0.055 0.038 0.015 0.011
[0.004] [0.002] [0.000] [0.000] [0.006] [0.003] [0.001] [0.000] [0.009] [0.005] [0.001] [0.001]

200 0.019 0.014 0.006 0.004 0.033 0.021 0.008 0.005 0.037 0.026 0.011 0.008
[0.002] [0.001] [0.000] [0.000] [0.003] [0.001] [0.000] [0.000] [0.005] [0.003] [0.001] [0.000]

0.50 25 0.063 0.042 0.016 0.011 0.129 0.084 0.032 0.022 0.127 0.075 0.024 0.016
[0.012] [0.006] [0.001] [0.001] [0.027] [0.012] [0.002] [0.001] [0.032] [0.013] [0.002] [0.001]

50 0.041 0.027 0.011 0.008 0.083 0.054 0.022 0.015 0.080 0.047 0.016 0.011
[0.006] [0.003] [0.001] [0.000] [0.013] [0.006] [0.001] [0.001] [0.015] [0.006] [0.001] [0.001]

100 0.028 0.019 0.008 0.005 0.055 0.036 0.015 0.011 0.052 0.031 0.011 0.007
[0.003] [0.002] [0.000] [0.000] [0.007] [0.003] [0.001] [0.000] [0.007] [0.003] [0.001] [0.000]

200 0.019 0.013 0.005 0.004 0.037 0.025 0.011 0.008 0.035 0.021 0.007 0.005
[0.002] [0.001] [0.000] [0.000] [0.004] [0.002] [0.000] [0.000] [0.004] [0.002] [0.000] [0.000]

0.75 25 0.061 0.042 0.017 0.011 0.136 0.100 0.046 0.033 0.132 0.085 0.030 0.021
[0.013] [0.006] [0.002] [0.001] [0.034] [0.019] [0.006] [0.003] [0.038] [0.018] [0.004] [0.002]

50 0.040 0.028 0.012 0.008 0.092 0.070 0.033 0.023 0.084 0.056 0.021 0.015
[0.007] [0.004] [0.001] [0.001] [0.018] [0.011] [0.003] [0.002] [0.018] [0.009] [0.002] [0.001]

100 0.028 0.020 0.008 0.006 0.064 0.050 0.024 0.017 0.055 0.038 0.015 0.011
[0.004] [0.002] [0.001] [0.000] [0.010] [0.006] [0.002] [0.001] [0.009] [0.005] [0.001] [0.001]

200 0.019 0.014 0.006 0.004 0.045 0.036 0.017 0.012 0.037 0.026 0.011 0.008
[0.002] [0.001] [0.000] [0.000] [0.006] [0.004] [0.001] [0.001] [0.005] [0.003] [0.001] [0.000]

Notes: Monte Carlo experiments based on 5000 repetitions. Standard deviations in brackets.
Table 3
Empirical coverage probability for a nominal 95% confidence interval. Location shift model.

τ n/T ϵit
i.i.d.
∼ N(0, 1) ϵit

i.i.d.
∼ χ2

3 ϵit
i.i.d.
∼ Cauchy

5 10 50 100 5 10 50 100

0.25 25 0.960 0.972 0.956 0.951 0.994 0.996 0.983 0.977 0.974 0.977 0.944 0.930
50 0.951 0.967 0.957 0.951 0.992 0.995 0.975 0.963 0.967 0.975 0.940 0.936

100 0.945 0.960 0.953 0.953 0.990 0.992 0.970 0.951 0.959 0.967 0.940 0.943
200 0.949 0.959 0.953 0.947 0.988 0.985 0.956 0.951 0.952 0.966 0.936 0.932

0.50 25 0.979 0.977 0.961 0.956 0.988 0.981 0.949 0.952 0.995 0.995 0.986 0.981
50 0.973 0.968 0.956 0.957 0.981 0.966 0.948 0.954 0.991 0.989 0.977 0.975

100 0.967 0.965 0.960 0.959 0.976 0.956 0.948 0.945 0.988 0.986 0.974 0.965
200 0.966 0.955 0.946 0.939 0.971 0.941 0.930 0.944 0.986 0.979 0.968 0.969

0.75 25 0.959 0.968 0.952 0.955 0.927 0.938 0.931 0.939 0.977 0.981 0.941 0.932
50 0.953 0.965 0.947 0.952 0.910 0.938 0.938 0.938 0.965 0.975 0.939 0.942

100 0.945 0.959 0.952 0.948 0.912 0.938 0.941 0.941 0.960 0.967 0.942 0.935
200 0.938 0.963 0.959 0.955 0.910 0.947 0.942 0.946 0.957 0.964 0.944 0.941

Notes: Monte Carlo experiments based on 5000 repetitions.
the χ2
3 case (in the latter for the third quartile) and T = 5, 10.

Moreover, the bias is much larger for the γ = 1 case than that for
γ = 0.5.9 These results suggest that the FE-QR estimator performs
well in small samples for the location shift model but may have a
large bias for the location-scale shift model where the quantile of
interest is evaluated at an associated low density (i.e., F = χ2

3 and
τ = 0.75 case) when T is small. Overall, these simulations confirm
that the bias exists for small T and does not depend on n.

4.2. Inference

To study the inference procedure based on the FE-QR estimator,
we first compute the estimated standard error.10 The results are
reported in Tables 2, 5 and 8 for the location shift and location-
scale shift (γ = 0.5, 1) cases, respectively. We also report the

9 Although not reported, we have also performed the same experiments for
γ = 0.2. In this case the bias is smaller than that for γ = 0.5.
10 For estimation of the asymptotic covariancematrix, we use the Gaussian kernel
and the default bandwidth option in the quantreg package in R.
sample standard deviation of the estimator based on the Monte
Carlo repetitions.

By comparing Table 2 with 1, 5 with 4 and 8 with 7, we may
see that the estimated standard error approximates very closely
the truth. Second, we calculate the empirical coverage probability
of the asymptotic Gaussian confidence interval at the 95% nominal
level. In this case, the greater distortions appear in the location-
scale shift case for large n/T , and in particular for the χ2

3 case and
τ = 0.75. The distortion is very severe for T = 5, 10 and n = 200
for all distributions, despite the fact that the estimated standard
error approximates well the truth. This possibly reflects that the
variance of the FE-QR estimator decreaseswhen nT increaseswhile
the bias decreaseswhen T increases but is independent of n, so that
the centering of the confidence interval will be severely distorted
when n/T is large.

5. Extension: dynamic case

We now extend the asymptotic results in Section 3 to the
dynamic case where we allow for dependence across time
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Table 4
Bias of β̂(τ ). Location-scale shift model. γ = 0.5.

τ n/T ϵit
i.i.d.
∼ N(0, 1) ϵit

i.i.d.
∼ χ2

3 ϵit
i.i.d.
∼ Cauchy

5 10 50 100 5 10 50 100 5 10 50 100

0.25 25 0.068 0.031 0.006 0.002 0.057 0.018 0.003 0.000 0.173 0.105 0.024 0.012
[0.205] [0.137] [0.06] [0.043] [0.287] [0.188] [0.079] [0.056] [0.426] [0.269] [0.119] [0.083]

50 0.063 0.032 0.006 0.003 0.040 0.014 0.000 0.000 0.181 0.114 0.026 0.013
[0.148] [0.098] [0.042] [0.03] [0.203] [0.131] [0.056] [0.039] [0.283] [0.186] [0.084] [0.059]

100 0.062 0.029 0.006 0.002 0.034 0.007 0.001 0.001 0.193 0.117 0.028 0.014
[0.105] [0.07] [0.03] [0.021] [0.145] [0.092] [0.039] [0.028] [0.195] [0.131] [0.059] [0.041]

200 0.063 0.030 0.005 0.002 0.026 0.006 0.000 −0.001 0.192 0.120 0.025 0.014
[0.073] [0.048] [0.021] [0.014] [0.101] [0.066] [0.028] [0.02] [0.136] [0.093] [0.041] [0.03]

0.50 25 0.000 −0.001 −0.002 −0.001 −0.045 −0.028 −0.005 −0.005 0.002 0.001 −0.002 0.000
[0.185] [0.13] [0.055] [0.039] [0.377] [0.27] [0.117] [0.082] [0.293] [0.182] [0.07] [0.049]

50 0.001 0.000 0.001 0.000 −0.059 −0.030 −0.007 −0.004 −0.006 0.002 −0.001 0.000
[0.133] [0.092] [0.039] [0.027] [0.266] [0.19] [0.083] [0.056] [0.198] [0.126] [0.051] [0.035]

100 0.001 −0.002 0.000 0.000 −0.069 −0.038 −0.006 −0.004 0.003 −0.001 0.000 −0.001
[0.095] [0.065] [0.027] [0.019] [0.189] [0.132] [0.058] [0.041] [0.138] [0.088] [0.035] [0.025]

200 0.000 0.000 0.001 0.000 −0.072 −0.036 −0.008 −0.004 0.000 0.000 −0.001 0.000
[0.065] [0.046] [0.02] [0.014] [0.134] [0.095] [0.042] [0.029] [0.097] [0.063] [0.025] [0.017]

0.75 25 −0.066 −0.034 −0.006 −0.004 −0.253 −0.132 −0.023 −0.014 −0.175 −0.105 −0.027 −0.013
[0.209] [0.136] [0.061] [0.042] [0.578] [0.396] [0.181] [0.127] [0.424] [0.271] [0.119] [0.083]

50 −0.067 −0.031 −0.005 −0.003 −0.263 −0.140 −0.027 −0.014 −0.192 −0.112 −0.028 −0.013
[0.146] [0.097] [0.042] [0.03] [0.401] [0.281] [0.128] [0.088] [0.282] [0.188] [0.083] [0.059]

100 −0.063 −0.031 −0.005 −0.003 −0.276 −0.148 −0.026 −0.014 −0.192 −0.119 −0.026 −0.015
[0.104] [0.069] [0.03] [0.021] [0.286] [0.2] [0.09] [0.064] [0.195] [0.131] [0.059] [0.042]

200 −0.062 −0.032 −0.005 −0.002 −0.279 −0.146 −0.026 −0.014 −0.198 −0.117 −0.028 −0.014
[0.073] [0.048] [0.021] [0.014] [0.204] [0.141] [0.065] [0.047] [0.135] [0.091] [0.042] [0.029]

Notes: Monte Carlo experiments based on 5000 repetitions. Standard deviations in brackets.
Table 5
Estimated standard errors of β̂(τ ). Location-scale shift model. γ = 0.5.

τ n/T ϵit
i.i.d.
∼ N(0, 1) ϵit

i.i.d.
∼ χ2

3 ϵit
i.i.d.
∼ Cauchy

5 10 50 100 5 10 50 100 5 10 50 100

0.25 25 0.212 0.147 0.061 0.043 0.378 0.244 0.090 0.061 0.423 0.285 0.113 0.080
[0.055] [0.028] [0.007] [0.004] [0.091] [0.042] [0.009] [0.005] [0.147] [0.068] [0.016] [0.009]

50 0.145 0.101 0.043 0.030 0.246 0.160 0.061 0.042 0.277 0.194 0.080 0.056
[0.03] [0.015] [0.004] [0.002] [0.046] [0.022] [0.005] [0.002] [0.072] [0.036] [0.009] [0.005]

100 0.101 0.071 0.030 0.021 0.164 0.107 0.042 0.029 0.187 0.134 0.057 0.040
[0.016] [0.009] [0.002] [0.001] [0.024] [0.011] [0.002] [0.001] [0.035] [0.019] [0.005] [0.003]

200 0.071 0.049 0.021 0.015 0.111 0.073 0.029 0.020 0.129 0.094 0.040 0.028
[0.009] [0.005] [0.001] [0.001] [0.013] [0.006] [0.001] [0.001] [0.019] [0.01] [0.003] [0.002]

0.50 25 0.212 0.144 0.058 0.040 0.430 0.290 0.119 0.083 0.385 0.235 0.083 0.055
[0.052] [0.025] [0.006] [0.003] [0.112] [0.055] [0.012] [0.007] [0.107] [0.044] [0.008] [0.004]

50 0.144 0.098 0.040 0.028 0.291 0.196 0.083 0.058 0.249 0.153 0.056 0.038
[0.028] [0.014] [0.003] [0.002] [0.06] [0.029] [0.007] [0.004] [0.052] [0.022] [0.004] [0.002]

100 0.099 0.068 0.028 0.020 0.201 0.135 0.058 0.041 0.166 0.103 0.038 0.026
[0.015] [0.008] [0.002] [0.001] [0.032] [0.016] [0.004] [0.002] [0.026] [0.011] [0.002] [0.001]

200 0.069 0.047 0.020 0.014 0.140 0.094 0.040 0.029 0.112 0.070 0.026 0.018
[0.008] [0.004] [0.001] [0.001] [0.017] [0.009] [0.002] [0.001] [0.013] [0.006] [0.001] [0.001]

0.75 25 0.211 0.147 0.061 0.043 0.512 0.384 0.174 0.124 0.421 0.285 0.114 0.080
[0.055] [0.029] [0.007] [0.004] [0.164] [0.087] [0.025] [0.014] [0.143] [0.07] [0.017] [0.009]

50 0.144 0.102 0.043 0.030 0.361 0.271 0.123 0.088 0.277 0.194 0.080 0.056
[0.03] [0.015] [0.004] [0.002] [0.089] [0.048] [0.013] [0.008] [0.068] [0.037] [0.009] [0.005]

100 0.100 0.071 0.030 0.021 0.254 0.193 0.087 0.062 0.186 0.134 0.057 0.040
[0.016] [0.008] [0.002] [0.001] [0.049] [0.026] [0.008] [0.004] [0.034] [0.019] [0.005] [0.003]

200 0.071 0.050 0.021 0.015 0.180 0.137 0.062 0.044 0.128 0.094 0.040 0.028
[0.009] [0.005] [0.001] [0.001] [0.027] [0.015] [0.004] [0.003] [0.018] [0.01] [0.003] [0.002]

Notes: Monte Carlo experiments based on 5000 repetitions. Standard deviations in brackets.
while maintaining independence across individuals. We make the
following assumptions in this case.

(D1) {(yit , xit), t ≥ 1} is stationary and β-mixing for each fixed
i, and independent across i. Let βi(j) denote the β-mixing
coefficients of {(yit , xit), t ≥ 1}. Then, there exist constants
a ∈ (0, 1) and B > 0 such that supi≥1 βi(j) ≤ Baj for all j ≥ 1.

(D2) Let fi,j(u1, u1+j|x1, x1+j) denote the conditional density of
(ui1, ui,1+j) given (xi1, xi,1+j) = (x1, x1+j). There exists a
constant C ′

f > 0 such that fi,j(u1, u1+j|x1, x1+j) ≤ C ′

f
uniformly over (u1, u1+j, x1, x1+j) for all i ≥ 1 and j ≥ 1.
(D3) Let Ṽni denote the covariance matrix of the term T−1/2T
t=1

{τ − I(uit ≤ 0)}(xit − γ it). Then, the limit Ṽ := n−1n
i=1 Ṽni

exists and is nonsingular.
Condition (D1) is similar to Condition 1 of Hahn andKuersteiner

(2004). Condition (D2) imposes new restrictions on the conditional
densities. Note that in Condition (D3) Ṽni is now a long run
covariance matrix.

The next theorem shows that similar asymptotic results to
those in Section 3 are obtained for the dependent case. The proof
is given in the Appendix.
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Table 6
Empirical coverage probability for a nominal 95% confidence interval. Location-scale shift model. γ = 0.5.

τ n/T ϵit
i.i.d.
∼ N(0, 1) ϵit

i.i.d.
∼ χ2

3 ϵit
i.i.d.
∼ Cauchy

5 10 50 100 5 10 50 100 5 10 50 100

0.25 25 0.913 0.946 0.950 0.947 0.976 0.984 0.970 0.970 0.894 0.917 0.913 0.929
50 0.899 0.933 0.946 0.946 0.974 0.976 0.969 0.959 0.847 0.884 0.908 0.924

100 0.875 0.931 0.942 0.949 0.967 0.974 0.963 0.951 0.764 0.830 0.903 0.924
200 0.836 0.904 0.939 0.955 0.960 0.966 0.954 0.953 0.633 0.726 0.886 0.906

0.50 25 0.956 0.957 0.957 0.949 0.945 0.940 0.950 0.952 0.983 0.987 0.979 0.974
50 0.952 0.960 0.948 0.954 0.939 0.941 0.946 0.955 0.980 0.979 0.968 0.966

100 0.948 0.957 0.958 0.958 0.933 0.929 0.943 0.944 0.978 0.976 0.967 0.959
200 0.960 0.955 0.939 0.939 0.915 0.924 0.937 0.938 0.976 0.967 0.949 0.956

0.75 25 0.906 0.940 0.942 0.950 0.826 0.896 0.922 0.936 0.893 0.915 0.917 0.928
50 0.900 0.932 0.946 0.942 0.807 0.880 0.931 0.943 0.841 0.889 0.912 0.923

100 0.876 0.926 0.941 0.942 0.735 0.845 0.925 0.937 0.758 0.825 0.906 0.916
200 0.840 0.900 0.944 0.955 0.623 0.789 0.913 0.929 0.616 0.739 0.870 0.907

Notes: Monte Carlo experiments based on 5000 repetitions.
Table 7
Bias of β̂(τ ). Location-scale shift model. γ = 1.

τ n/T ϵit
i.i.d.
∼ N(0, 1) ϵit

i.i.d.
∼ χ2

3 ϵit
i.i.d.
∼ Cauchy

5 10 50 100 5 10 50 100 5 10 50 100

0.25 25 0.138 0.066 0.012 0.005 0.129 0.043 0.005 0.000 0.340 0.212 0.049 0.025
[0.348] [0.231] [0.1] [0.071] [0.498] [0.32] [0.132] [0.092] [0.715] [0.45] [0.199] [0.138]

50 0.132 0.067 0.012 0.006 0.100 0.037 0.000 0.000 0.361 0.224 0.053 0.027
[0.253] [0.164] [0.069] [0.05] [0.354] [0.224] [0.092] [0.065] [0.473] [0.313] [0.14] [0.097]

100 0.131 0.062 0.013 0.005 0.087 0.025 0.001 0.001 0.380 0.231 0.056 0.028
[0.178] [0.118] [0.049] [0.035] [0.253] [0.156] [0.065] [0.047] [0.326] [0.219] [0.098] [0.068]

200 0.132 0.065 0.010 0.005 0.074 0.023 0.000 −0.001 0.379 0.237 0.052 0.029
[0.12] [0.08] [0.035] [0.024] [0.176] [0.112] [0.047] [0.032] [0.228] [0.155] [0.069] [0.05]

0.50 25 0.000 −0.002 −0.003 −0.001 −0.079 −0.052 −0.012 −0.009 0.001 0.001 −0.003 0.000
[0.313] [0.218] [0.091] [0.064] [0.649] [0.454] [0.194] [0.135] [0.488] [0.302] [0.116] [0.081]

50 0.002 0.000 0.001 0.000 −0.103 −0.057 −0.014 −0.008 −0.009 0.002 −0.002 0.000
[0.227] [0.153] [0.065] [0.045] [0.456] [0.32] [0.137] [0.093] [0.331] [0.21] [0.084] [0.058]

100 0.002 −0.002 0.000 −0.001 −0.123 −0.071 −0.014 −0.008 0.004 −0.002 0.000 −0.001
[0.162] [0.108] [0.044] [0.032] [0.326] [0.223] [0.096] [0.068] [0.232] [0.147] [0.058] [0.041]

200 −0.001 0.000 0.001 0.000 −0.125 −0.067 −0.016 −0.009 −0.001 0.001 −0.002 0.000
[0.11] [0.074] [0.033] [0.023] [0.231] [0.16] [0.069] [0.048] [0.162] [0.104] [0.041] [0.029]

0.75 25 −0.135 −0.071 −0.012 −0.007 −0.506 −0.271 −0.051 −0.028 −0.344 −0.210 −0.056 −0.027
[0.356] [0.229] [0.101] [0.07] [0.986] [0.668] [0.299] [0.21] [0.71] [0.453] [0.196] [0.138]

50 −0.139 −0.066 −0.011 −0.006 −0.522 −0.285 −0.055 −0.028 −0.379 −0.224 −0.056 −0.027
[0.248] [0.164] [0.071] [0.05] [0.683] [0.472] [0.212] [0.146] [0.472] [0.314] [0.138] [0.098]

100 −0.132 −0.066 −0.013 −0.006 −0.546 −0.296 −0.054 −0.028 −0.380 −0.235 −0.054 −0.030
[0.178] [0.116] [0.05] [0.036] [0.487] [0.338] [0.15] [0.106] [0.33] [0.221] [0.098] [0.07]

200 −0.126 −0.068 −0.011 −0.004 −0.550 −0.293 −0.055 −0.028 −0.390 −0.231 −0.056 −0.028
[0.123] [0.08] [0.035] [0.024] [0.348] [0.237] [0.107] [0.077] [0.227] [0.153] [0.069] [0.047]

Notes: Monte Carlo experiments based on 5000 repetitions. Standard deviations in brackets.
Theorem 5.1. Assume conditions (D1)–(D3), (A3) and (B1)–(B3).
Then, (α̂, β̂) is weakly consistent provided that (log n)2/T → 0. If
(log n)2/T → 0 but T grows atmost polynomially in n, then β̂ admits
the expansion (3.2). If moreover n2(log n)3/T → 0, then we have
√
nT (β̂ − β0)

d
→N(0,Γ −1ṼΓ −1).

In proving Theorem 5.1, we need some extensions of empirical
process inequalities to β-mixing sequences, which we believe is a
nontrivial task. We develop those extensions in Appendix C, which
are useful in other contexts such as asymptotic analysis of sieve
estimation for β-mixing sequences.

6. Discussion

In this paper, we have studied the asymptotic properties of
the FE-QR estimator. The results found in this paper show that
the asymptotic theory for panel models with non-differentiable
objective functions, as in the QR case, should be analyzed carefully.
Usually the limiting distribution under the joint asymptotics
coincideswith that under the sequential asymptotics as long asn/T
goes to zero, as is well recognized in the literature. However, this
paper draws a caution that such a result may not directly apply to
the QR case.

There remain several issues to be investigated.
It is an open question whether the convergence rate of the

remainder term in (3.2) can be improved to Op(T−1). It should
be pointed out that although the rate of the remainder term
derived in this paper is the best one that we could achieve at this
point, there might be a room for improvement on the rate, which
means that our condition for the asymptotic normality is only a
sufficient one. However, although we could not formally show in
this paper, we conjecture that n/T → 0 is a sufficient condition
to asymptotic normality of QR panel data. Kato and Galvao (2010)
used a smoothed version of the FE-QR estimator to derive the
asymptotic bias of the estimator when n/T → ρ > 0. Thus,
the smoothed estimator is unbiased for n/T → 0. However, it is
important to note that the derivationmakes use of the smoothness
of the objective and the score functions, which is not applicable to
this paper. The challenge in the present context is that higher order
expansions for the standard QR is a very difficult subject.
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Table 8
Estimated standard errors of β̂(τ ). Location-scale shift model. γ = 1.

τ n/T ϵit
i.i.d.
∼ N(0, 1) ϵit

i.i.d.
∼ χ2

3 ϵit
i.i.d.
∼ Cauchy

5 10 50 100 5 10 50 100 5 10 50 100

0.25 25 0.362 0.249 0.102 0.071 0.626 0.403 0.151 0.102 0.710 0.480 0.191 0.134
[0.099] [0.05] [0.012] [0.007] [0.155] [0.073] [0.015] [0.008] [0.255] [0.116] [0.028] [0.015]

50 0.248 0.171 0.071 0.050 0.411 0.267 0.103 0.070 0.466 0.327 0.134 0.094
[0.053] [0.027] [0.007] [0.004] [0.081] [0.038] [0.008] [0.004] [0.124] [0.063] [0.015] [0.009]

100 0.173 0.119 0.050 0.035 0.276 0.180 0.070 0.048 0.315 0.225 0.095 0.067
[0.029] [0.015] [0.004] [0.002] [0.042] [0.02] [0.004] [0.002] [0.061] [0.033] [0.008] [0.005]

200 0.120 0.083 0.035 0.025 0.189 0.123 0.049 0.034 0.217 0.158 0.067 0.047
[0.015] [0.008] [0.002] [0.001] [0.022] [0.011] [0.002] [0.001] [0.032] [0.018] [0.005] [0.003]

0.50 25 0.359 0.243 0.097 0.067 0.730 0.493 0.201 0.139 0.632 0.387 0.138 0.092
[0.094] [0.045] [0.01] [0.006] [0.2] [0.099] [0.022] [0.012] [0.18] [0.076] [0.014] [0.007]

50 0.245 0.166 0.067 0.047 0.498 0.337 0.139 0.097 0.411 0.254 0.093 0.063
[0.05] [0.025] [0.006] [0.003] [0.108] [0.053] [0.012] [0.007] [0.089] [0.038] [0.008] [0.004]

100 0.170 0.115 0.047 0.033 0.345 0.232 0.097 0.068 0.275 0.171 0.064 0.043
[0.027] [0.014] [0.003] [0.002] [0.057] [0.029] [0.006] [0.004] [0.045] [0.02] [0.004] [0.002]

200 0.117 0.080 0.033 0.023 0.241 0.162 0.067 0.048 0.186 0.116 0.044 0.030
[0.014] [0.007] [0.002] [0.001] [0.031] [0.016] [0.004] [0.002] [0.023] [0.01] [0.002] [0.001]

0.75 25 0.360 0.249 0.103 0.071 0.892 0.660 0.290 0.205 0.706 0.479 0.191 0.134
[0.098] [0.051] [0.012] [0.007] [0.297] [0.155] [0.042] [0.023] [0.246] [0.121] [0.028] [0.016]

50 0.247 0.172 0.071 0.050 0.629 0.463 0.204 0.145 0.466 0.327 0.135 0.094
[0.053] [0.027] [0.007] [0.004] [0.162] [0.084] [0.023] [0.013] [0.119] [0.064] [0.015] [0.009]

100 0.172 0.120 0.050 0.035 0.442 0.328 0.145 0.103 0.314 0.225 0.095 0.067
[0.028] [0.015] [0.004] [0.002] [0.087] [0.047] [0.013] [0.007] [0.06] [0.033] [0.008] [0.005]

200 0.121 0.084 0.035 0.025 0.313 0.233 0.103 0.073 0.215 0.158 0.067 0.047
[0.016] [0.008] [0.002] [0.001] [0.047] [0.026] [0.007] [0.004] [0.032] [0.018] [0.004] [0.003]

Notes: Monte Carlo experiments based on 5000 repetitions. Standard deviations in brackets.
Table 9
Empirical coverage probability for a nominal 95% confidence interval. Location-scale shift model. γ = 1.

τ n/T ϵit
i.i.d.
∼ N(0, 1) ϵit

i.i.d.
∼ χ2

3 ϵit
i.i.d.
∼ Cauchy

5 10 50 100 5 10 50 100 5 10 50 100

0.25 25 0.907 0.939 0.948 0.949 0.971 0.978 0.971 0.973 0.875 0.900 0.913 0.929
50 0.883 0.929 0.947 0.944 0.966 0.974 0.970 0.963 0.812 0.863 0.905 0.923

100 0.857 0.920 0.945 0.950 0.957 0.971 0.966 0.958 0.714 0.792 0.888 0.916
200 0.783 0.883 0.939 0.953 0.949 0.963 0.948 0.964 0.546 0.651 0.857 0.882

0.50 25 0.956 0.961 0.956 0.953 0.940 0.937 0.950 0.956 0.979 0.985 0.979 0.974
50 0.949 0.959 0.949 0.956 0.937 0.939 0.949 0.957 0.979 0.978 0.967 0.967

100 0.949 0.958 0.963 0.950 0.926 0.930 0.944 0.946 0.977 0.975 0.968 0.960
200 0.959 0.965 0.939 0.941 0.912 0.922 0.941 0.940 0.974 0.970 0.959 0.960

0.75 25 0.896 0.938 0.945 0.950 0.812 0.892 0.924 0.935 0.873 0.899 0.918 0.927
50 0.884 0.926 0.945 0.945 0.790 0.863 0.926 0.940 0.813 0.867 0.903 0.919

100 0.847 0.917 0.936 0.935 0.697 0.819 0.922 0.932 0.703 0.781 0.892 0.910
200 0.812 0.864 0.931 0.956 0.552 0.737 0.903 0.921 0.535 0.664 0.846 0.903

Notes: Monte Carlo experiments based on 5000 repetitions.
Since there is a large literature on analytical bias correction for
large panel data, one could wonder about deriving the asymptotic
bias in the present context of FE-QR estimation. There are at
least two important reasons to explain the degree of difficulty in
the FE-QR case. First, the rate Op{(T/ log n)−3/4

} in the Bahadur
representation in Theorem 3.2 comes from the rate of the score
terms, as defined in the proof of Theorem 3.2. Unfortunately, a
direct expansion of these terms with respect to (α̂, β̂) and the
simple evaluation of the mean and variance is not feasible.11 It is
important to note that for each i, the convergence rate of (α̂i, β̂) is
dominated by α̂i, and thus is atmost T−1/2. However, because of the
non-smoothness of the indicator function, the evaluation of these
terms based on some moment inequalities for empirical processes
(such as Proposition B.1) leads to the rate Op{max1≤i≤n |α̂i −

αi0|
3/2

}, which turns out to be Op(T−3/4) (log n term is ignored for

11 A way to deal with such terms is to consider them as empirical processes
indexed by (α,β), and establish the rates by using the preliminary rates of (α̂, β̂).
This is what the present proof does.
simplicity). Thus, a more refined result (such as a bias result) could
be obtained if one could establish the probability limits of these
terms (scaled by a suitable term), which is thought to be a quite
challenging task and is not solved in this paper.12 Second, there
is another difficulty to obtain a bias result to the FE-QR estimator.
This is related to indeterminateness of the higher order behavior of
quantile regression estimators. Consider, for illustrative purposes,
a sample τ -quantile of uniform random variables u1, . . . , un on
[0, 1] where τ ∈ (0, 1) is fixed and nτ is an integer. Let u(1) <
· · · < u(n) denote the order statistics of u1, . . . , un. Then, the
sample τ -quantile is usually given by u(nτ). However, if we view
the sample quantile as a solution to the QRminimization problem,
it can be any value in [u(nτ), u(nτ+1)], of which themean length is of
order n−1. This means that the higher order behavior of the sample
τ -quantile at n−1 rate is not fully determined if we take the sample

12 To obtain a bias result, establishing the exact probability limits of these terms
would be essential, because the corresponding terms in the standard smooth case
contribute to the bias of the resulting fixed effects estimator.
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quantile as a solution to the QR minimization problem. Since
the asymptotic bias of the general fixed effect estimator depends
on the higher order behavior of the estimators of the individual
parameters at T−1 rate, this indeterminateness would be another
challenge to obtain a bias result to the FE-QR estimator.

Appendix A. Proofs

A.1. Proof of Theorem 3.1

PutMni(αi,β) := T−1T
t=1 ρτ (yit−αi−x′

itβ) and∆ni(αi,β) :=

Mni(αi,β) − Mni(αi0,β0). For each δ > 0, define Bi(δ) :=

{(α,β): |α − αi0| + ∥β − β0∥1 ≤ δ} and ∂Bi(δ) := {(α,β): |α −

αi0| + ∥β − β0∥1 = δ}.

Proof of Theorem 3.1. We divide the proof into two steps.

Step 1. We first prove β̂
p

→ β0. Fix any δ > 0. For each (αi,β) ∉

Bi(δ), define α̃i = riαi + (1 − ri)αi0, β̃i = riβ + (1 − ri)β0,
where ri = δ/(|αi − αi0| + ∥β − β0∥1). Note that ri ∈ (0, 1)
and (α̃i, β̃i) ∈ ∂Bi(δ). Because of the convexity of the objective
function, we have

ri{Mni(αi,β)− Mni(αi0,β0)}

≥ Mni(α̃i, β̃)− Mni(αi0,β0)

= {E[∆ni(α̃i, β̃i)]} + {∆ni(α̃i, β̃i)− E[∆ni(α̃i, β̃i)]}. (A.1)

Use the identity of Knight (1998) to obtain

E[∆ni(αi,β)] = E

 (αi−αi0)+x′i1(β−β0)

0
{Fi(s|xi1)− τ }ds


.

From condition (A3), the first term on the right side of Eq. (A.1) is
greater than or equal to ϵδ for all 1 ≤ i ≤ n. Thus, by (A.1), we
obtain the inclusion relation
∥β̂ − β0∥1 > δ


⊂

Mni(αi,β) ≤ Mni(αi0,β0), 1 ≤ ∃i ≤ n, ∃(αi,β) ∉ Bi(δ)


⊂


max
1≤i≤n

sup
(αi,β)∈Bi(δ)

|∆ni(αi,β)− E[∆ni(αi,β)]| ≥ ϵδ


.

The first inclusion follows from the following argument. Suppose
that ∥β̂ − β0∥1 > δ. Then, (α̂i, β̂) ∉ Bi(δ) for all 1 ≤ i ≤

n. If Mni(α̂i, β̂) > Mni(αi0,β0) for all 1 ≤ i ≤ n, thenn
i=1 Mni(α̂i, β̂) >

n
i=1 Mni(αi0,β0), which however contradicts

the definition of (α̂, β̂). Thus, Mni(α̂i, β̂) ≤ Mni(αi0,β0) for some
1 ≤ i ≤ n, which leads to the first inclusion.

Therefore, it suffices to show that for every ϵ > 0,

lim
n→∞

P


max
1≤i≤n

sup
(αi,β)∈Bi(δ)

|∆ni(αi,β)− E[∆ni(αi,β)]| > ϵ


= 0. (A.2)

[Recall that T = Tn is indexed by n, and n → ∞ automatically
means that T = Tn → ∞.]

Because of the union bound, it suffices to prove that for every
ϵ > 0,

max
1≤i≤n

P


sup

(α,β)∈Bi(δ)
|∆ni(α,β)− E[∆ni(α,β)]| > ϵ


= o(n−1). (A.3)

We follow the proof of Fernandez-Val (2005, Lemma 7) to show
(A.3). Without loss of generality, we may assume that αi0 = 0 and
β0 = 0. Then, Bi(δ) is independent of i and write Bi(δ) = B(δ) for
simplicity. Put gα,β(u, x) := ρτ (u − α − x′β) − ρτ (u). Observe
that |gα,β(u, x)− gᾱ,β̄(u, x)| ≤ C(1 + ∥x∥1)(|α − ᾱ| + ∥β − β̄∥1)
for some universal constant C > 0. Put L(x) := C(1 + ∥x∥1)
and κ := supi≥1 E[L(xi1)]. Since B(δ) is a compact subset of Rp+1,
there exist Kℓ1-balls with centers (α(j),β(j)), j = 1, . . . , K and
radius ϵ/(7κ) such that the collection of these balls covers B(δ).
Note that K is independent of i and can be chosen such that K =

K(ϵ) = O(ϵ−p−1) as ϵ → 0. Now, for each (α,β) ∈ B(δ), there is
j ∈ {1, . . . , K} such that |gα,β(u, x)− gα(j),β(j)(u, x)| ≤ L(x)ϵ/(7κ),
which leads to |∆ni(α,β) − E[∆ni(α,β)]| ≤ |∆ni(α

(j),β(j)) −

E[∆ni(α
(j),β(j))]|+{ϵ/(7κ)}·|T−1T

t=1{L(xit)−E[L(xi1)]}|+2ϵ/7.
Therefore, we have

P


sup

(α,β)∈B(δ)
|∆ni(α,β)− E[∆ni(α,β)]| > ϵ



≤

K
j=1

P

|∆ni(α

(j),β(j))− E[∆ni(α
(j),β(j))]| >

ϵ

3



+ P


1
T

 T
t=1

{L(xit)− E[L(xi1)]}

 > 7κ
3


. (A.4)

Since supi≥1 E[L2s(xi1)] < ∞, application of the Marcinkiewicz–
Zygmund inequality (see Corollary 2 in Chow and Teicher (1997,
p. 387)) implies that both terms on the right side of (A.4) areO(T−s)
uniformly over 1 ≤ i ≤ n. Because of the hypothesis on T , they are
o(n−1), leading to (A.3).

Step 2. Next, we shall show thatmax1≤i≤n |α̂i−αi0|
p

→ 0. Recall that
α̂i = argminα Mni(α, β̂). Fix any δ > 0. For each αi ∈ R such that
|αi−αi0| > δ, define α̃i = riαi+(1−ri)αi0, where ri = δ/|αi−αi0|.
Because of the convexity of the objective function, we have

ri{Mni(αi, β̂)− Mni(αi0, β̂)}

≥ Mni(α̃i, β̂)− Mni(αi0, β̂)

= Mni(α̃i, β̂)− Mni(αi0,β0)− {Mni(αi0, β̂)− Mni(αi0,β0)}

= {∆ni(α̃i, β̂)− E[∆ni(α̃i,β)]|β=β̂
}

− {∆ni(α0i, β̂)− E[∆ni(α0i,β)]|β=β̂
} + E[∆ni(α̃i,β0)]

+ {E[∆ni(α̃i,β)]|β=β̂
− E[∆ni(α̃i,β0)]} + E[∆ni(α0i,β)]|β=β̂

.

It is seen from condition (A3) that the third term on the right side
is greater than or equal to ϵδ . Thus, we obtain the inclusion relation

{|α̂i − αi0| > δ, 1 ≤ ∃i ≤ n}

⊂ {Mni(αi, β̂) ≤ Mni(αi0, β̂), 1 ≤ ∃i ≤ n,
∃αi ∈ R s.t. |αi − αi0| > δ}

⊂


max
1≤i≤n

sup
|α−αi0|≤δ

|∆ni(α, β̂)− E[∆ni(α,β)]|β=β̂
| ≥

ϵδ

4



∪


max
1≤i≤n

sup
|α−αi0|≤δ

||E[∆ni(α,β)]|β=β̂
− E[∆ni(α,β0)]| ≥

ϵδ

4


=: A1n ∪ A2n.

Since β̂ is consistent by Step 1, and especially β̂ = Op(1), by (A.2),
it is shown that P(A1n) → 0. Finally, since

|E[∆ni(α,β)] − E[∆ni(α,β0)]| ≤ 2E[∥xi1∥]∥β − β0∥,

and supi≥1 E[∥xi1∥] ≤ 1+ supi≥1 E[∥xi1∥2s
] < ∞, consistency of β̂

implies that P(A2n) → 0. Therefore, we complete the proof. �
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Remark A.1. If supi≥1 ∥xi1∥ ≤ M (a.s.) for some constant M , we
may take L(x) ≡ C(1+M) and the second term on the right side of
(A.4) will vanish. In this case, we can apply Hoeffding’s inequality
to the first term on the right side of (A.4) and the probability in
(A.3) is bounded by D exp(−DT ) for some positive constant D that
depends on ϵ but not on i. Therefore, the conclusion of Theorem3.1
holds when log n/T → 0 as n → ∞ in this case.

A.2. Proof of Theorem 3.2

Define

H(1)
ni (αi,β) :=

1
T

T
t=1

{τ − I(yit ≤ αi + x′

itβ)},

H(1)ni (αi,β) := E[H(1)
ni (αi,β)]

= E[{τ − Fi(αi − αi0 + x′

i1(β − β0)|xi1)}],

H(2)
n (α,β) :=

1
nT

n
i=1

T
t=1

{τ − I(yit ≤ αi + x′

itβ)}xit ,

H(2)n (α,β)

:= E[H(2)
n (α,β)]

=
1
n

n
i=1

E[{τ − Fi(αi − αi0 + x′

i1(β − β0)|xi1)}xi1].

Note that H(1)
ni (αi,β) depends on n since T does. The (n + p)

dimensional vector of functions [H(1)
n1 (α1,β), . . . ,H

(1)
nn (αn,β),

H(2)′
n (α,β)]′ are called the scores for problem (2.2).
Before starting the proof, we introduce some notation used in

empirical process theory. Let F be a class of measurable functions
on a measurable space (S, S). For a process Z(f ) defined on F ,
∥Z(f )∥F := supf∈F |Z(f )|. For a probability measure Q on (S, S)
and ϵ > 0, let N(F , L2(Q ), ϵ) denote the ϵ-covering number of
F with respect to the L2(Q ) norm ∥ · ∥L2(Q ). For the definition of
a Vapnik–Chervonenkis (VC) subgraph class, we refer to van der
Vaart and Wellner (1996, Section 2.6). For a, b ∈ R, we use the
notation a ∨ b := max{a, b}.

Proof of Theorem 3.2. Recall first that by Theorem 3.1, under the
present conditions, (α̂, β̂) isweakly consistent.Wedivide theproof
into several steps.

Step 1 (Asymptotic representation). We shall show that

β̂ − β0 + op(∥β̂ − β0∥)

= Γ −1
n


−n−1

n
i=1

H(1)
ni (αi0,β0)γ i + H(2)

n (α0,β0)



−Γ −1
n


n−1

n
i=1

γ i


H(1)

ni (α̂i, β̂)− H(1)ni (α̂i, β̂)

− H(1)
ni (αi0,β0)


+Γ −1

n


H(2)

n (α̂, β̂)− H(2)n (α̂, β̂)− H(2)
n (α0,β0)


+Op


T−1

∨ max
1≤i≤n

|α̂i − αi0|
2

. (A.5)

Because of the computational property of the QR estimator (see
Eq. (3.10) of Gutenbrunner and Jureckova (1992)), it is shown that
max1≤i≤n |H(1)

ni (α̂i, β̂)| = Op(T−1). Thus, uniformly over 1 ≤ i ≤ n,
we have

Op(T−1) = H(1)
ni (αi0,β0)+ H(1)ni (α̂i, β̂)

+


H(1)

ni (α̂i, β̂)− H(1)ni (α̂i, β̂)− H(1)
ni (αi0,β0)


.

Expanding H(1)ni (α̂i, β̂) around (αi0,β0), we have

α̂i − αi0 = {fi(0)}−1H(1)
ni (αi0,β0)− γ ′

i(β̂ − β0)

+ {fi(0)}−1
{H(1)

ni (α̂i, β̂)− H(1)ni (α̂i, β̂)

− H(1)
ni (αi0,β0)} + r̂ni, (A.6)

wheremax1≤i≤n |r̂ni| = Op{T−1
∨max1≤i≤n |α̂i−αi0|

2
∨∥β̂−β0∥

2
}.

Similarly, the computational property of the QR estimator
implies that ∥H(2)

n (α̂, β̂)∥ = Op{T−1 max1≤i≤n,1≤t≤T ∥xit∥} =

Op(T−1), from which we have

Op(T−1) = H(2)
n (α0,β0)+ H(2)n (α̂, β̂)

+ {H(2)
n (α̂, β̂)− H(2)n (α̂, β̂)− H(2)

n (α0,β0)}. (A.7)

Use Taylor’s theorem to obtain

H(2)n (α̂, β̂) = −
1
n

n
i=1

E[fi(0|xi1)xi1](α̂i − αi0)

−


1
n

n
i=1

E[fi(0|xi1)xi1x′

i1]


(β̂ − β0)

+ op(∥β̂ − β0∥)+ Op


max
1≤i≤n

|α̂i − αi0|
2

. (A.8)

Plugging (A.6) into (A.8) leads to

H(2)n (α̂, β̂) = −
1
n

n
i=1

H(1)
ni (αi0,β0)γ i − Γn(β̂ − β0)

−
1
n

n
i=1

γ i{H
(1)
ni (α̂i, β̂)− H(1)ni (α̂i, β̂)

− H(1)
ni (αi0,β0)} + op(∥β̂ − β0∥)

+Op


T−1

∨ max
1≤i≤n

|α̂i − αi0|
2

. (A.9)

Combining (A.7) and (A.9) yields the desired representation. The
remaining steps are devoted to determining the order of the
remainder terms in (A.5).
Step 2 (Rates of the remainder terms). Take δn → 0 such that
max1≤i≤n |α̂i − αi0| ∨ ∥β̂ − β0∥ = Op(δn). We shall show thatn−1

n
i=1

γ i{H
(1)
ni (α̂i, β̂)− H(1)ni (α̂i, β̂)− H(1)

ni (αi0,β0)}


= Op(dn), (A.10)

∥H(2)
n (α̂, β̂)− H(2)n (α̂, β̂)− H(2)

n (α0,β0)∥ = Op(dn) (A.11)

where dn := T−1
| log δn| ∨ T−1/2δ

1/2
n | log δn|1/2.

We only prove (A.10) since the proof of (A.11) is analogous.13
Without loss of generality, we may assume that αi0 = 0 and
β0 = 0. Put gα,β(u, x) := I(u ≤ α + x′β) − I(u ≤ 0), Gδ :=

13 Although the present proof requires xi1 to be bounded, it is possible to use
Theorem 2.14.1 of van der Vaart and Wellner (1996) to show (A.11), which only
requires that supi≥1 E[∥xi1∥2

] < ∞. However, recall that condition (B1) is used to
ensure (A.7).
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{gα,β: |α| ≤ δ, ∥β∥ ≤ δ} and ξit := (uit , xit). Since γ i is bounded
over i, it suffices to show that

max
1≤i≤n

E

 T
t=1

{g(ξit)− E[g(ξi1)]}


Gδn

 = O(dnT ). (A.12)

To this end, we apply Proposition B.1 to the class of functions
G̃i,δn := {g − E[g(ξi1)]: g ∈ Gδn}. Observe that G̃i,δn is pointwise
measurable and each element of G̃i,δn is bounded by 2. Because of
Lemmas 2.6.15 and 2.6.18 of van der Vaart andWellner (1996), the
class G∞ := {gα,β:α ∈ R,β ∈ Rp

} is a VC subgraph class. Thus, by
Theorem 2.6.7 of van der Vaart and Wellner (1996), the fact that
G̃i,δn ⊂ {g − E[g(ξi1)]: g ∈ G∞}, and a simple estimate of covering
numbers, there exist constants A ≥ 3

√
e and v ≥ 1 independent of

i and n such that N(G̃i,δn , L2(Q ), 2ϵ) ≤ (A/ϵ)v for every 0 < ϵ < 1
and every probability measure Q on Rp+1. Combining the fact that
E[gα,β(ξi1)2] = E[|Fi(α+ x′

i1β|xi1)− Fi(0|xi1)|] ≤ Cf (|α| +M∥β∥),
one can see that G̃i,δn satisfies all the conditions of Proposition B.1
with U = 2 and σ 2

= Cf (1 + M)δn, and the constants A and v are
independent of i and n. This implies that the left side of (A.12) is
O(dnT ).
Step 3 (Preliminary convergence rates). We shall show that

max
1≤i≤n

|α̂i − αi0| = Op{(T/ log n)−1/2
},

∥β̂ − β0∥ = op{(T/ log n)−1/2
}.

We first show that max1≤i≤n |α̂i − αi0| = Op{(T/ log n)−1/2
}.

Because of consistency of (α̂, β̂) and the result given in Step 2, the
second and third terms on the right side of (A.5) is op(T−1/2), which
implies that

∥β̂ − β0∥ = Op


max
1≤i≤n

|α̂i − αi0|
2


+ op(T−1/2). (A.13)

Thus, by (A.6), max1≤i≤n |α̂i − αi0| is bounded by

const. ×

max
1≤i≤n

|H(1)
ni (αi0,β0)| + max

1≤i≤n
|H(1)

ni (α̂i, β̂)

− H(1)ni (α̂i, β̂)− H(1)
ni (αi0,β0)|


+ op(T−1/2),

with probability approaching one.
First, observe that for any K > 0,

P

max
1≤i≤n

|H(1)
ni (αi0,β0)| > (T/ log n)−1/2K


≤

n
i=1

P

|H(1)

ni (αi0,β0)| > (T/ log n)−1/2K

,

and the right side is bounded by 2n1−K2/2 byHoeffding’s inequality.
This implies that max1≤i≤n |H(1)

ni (αi0,β0)| = Op{(T/ log n)−1/2
}.

We next show that

max
1≤i≤n

|H(1)
ni (α̂i, β̂)− H(1)ni (α̂i, β̂)− H(1)

ni (αi0,β0)|

= op{(T/ log n)−1/2
},

which leads to the first result. Without loss of generality, as before,
wemay assume thatαi0 = 0 andβ0 = 0. LetGδ and ξit be the same
as those given in Step 2. Because of consistency of (α̂, β̂) and the
union bound, it suffices to show that for every ϵ > 0, there exists
a sufficiently small δ > 0 such that

max
1≤i≤n

P


 T

t=1

{g(ξit)− E[g(ξi1)]}


Gδ

> (T log n)1/2ϵ


= o(n−1).
To this end, we make use of Bousquet’s version of Talagrand’s
inequality (see Proposition B.2 in Appendix B). Fix ϵ > 0. Put
Zi := ∥

T
t=1{g(ξit)−E[g(ξi1)]}∥Gδ . By PropositionB.2, for all s > 0,

with probability at least 1 − e−s2 , we have

Zi ≤ E[Zi] + s

2{TCf (1 + M)δ + 4E[Zi]} +

2s2

3
, (A.14)

where we have used the fact that each element in Gδ is bounded
by 1 and E[g2(ξi1)] ≤ Cf (1 + M)δ for g ∈ Gδ . By Step 2, we have

max
1≤i≤n

E[Zi] ≤ const. × (log |δ| + T 1/2δ1/2| log δ|1/2),

where the constant is independent of δ and n. Take s =
√
2 log n.

Then, it is seen that there exist a positive constant δ and a positive
integer n0 independent of i and n such that the right side on
(A.14) is smaller than (T log n)1/2ϵ for all n ≥ n0. This implies
that max1≤i≤n P{Zi > (T log n)1/2ϵ} ≤ n−2. Therefore, we have
max1≤i≤n |α̂i − αi0| = Op{(T/ log n)−1/2

}.
For the second result, by the first result and (A.13), we have

∥β̂ − β0∥ = op{(T/ log n)−1/2
}.

Step 4 (Conclusion). By Step 3, we may take δn = (T/ log n)−1/2 in
Step 2. Thus, by Step 1, we have

β̂ − β0 + op(∥β̂ − β0∥)

= Γ −1
n


−n−1

n
i=1

H(1)
ni (αi0,β0)γ i + H(2)

n (α0,β0)


+Op{(T/ log n)−3/4

}. (A.15)

The first term on the right side is Op{(nT )−1/2
}. This shows that

∥β̂ − β0∥ = Op{(nT )−1/2
∨ (T/ log n)−3/4

}. If n2(log n)3/T → 0,
then ∥β̂ − β0∥ = Op{(nT )−1/2

}, and by the Lyapunov central limit

theorem, we have
√
nT (β̂ −β0)

d
→N{0, τ (1− τ)Γ −1VΓ −1

}. �

Remark A.2. The reason why the order of the remainder term in
(A.15) is Op{(T/ log n)−3/4

} and not Op(T−1) is that the exponent of
δn inside the Op terms on the right side of Eqs. (A.10) and (A.11) is
1/2 and not 1. Recall the definition of gα,β given in Step 2. Since gα,β
is not differentiablewith respect to (α,β), E[gα,β(ξi1)2] is bounded
by const. × (|α| + ∥β∥) but not by const. × (|α|

2
+ ∥β∥

2), which
results in the exponent 1/2 of δn. Note that if gα,β were smooth
in (α,β), we could use Taylor’s theorem to bound E[gα,β(ξi1)2] by
const. × (|α|

2
+ ∥β∥

2). In that case, the exponent of δn would be
1, leading to the Op(T−1) rate of the remainder terms (we have
ignored the log n term).

A.3. Proof of Proposition 3.1

The proof is basically similar to that of Kato and Galvao (2010,
Theorem 3.2). However, as the present conditions are different
from theirs, we give a proof of Proposition 3.1 for the sake of
completeness.14 Recall that under the present conditions, (α̂, β̂)
is weakly consistent. It suffices to show that uniformly over 1 ≤

i ≤ n:

1
T

T
t=1

Khn(ûit) = fi(0)+ op(1),

1
T

T
t=1

Khn(ûit)xit = E[fi(0|xi1)xi1] + op(1),

14 In fact, the condition on the bandwidth hn is now weakened.
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1
T

T
t=1

Khn(ûit)xitx′

it = E[fi(0|xi1)xi1x′

i1] + op(1).

We only prove the first assertion because the proofs of the latter
two assertions are analogous.

Without loss of generality, we may assume that αi0 = 0 and
β0 = 0. Put

fi(α,β) :=
1
T

T
t=1

Khn(uit − α − x′

itβ).

We have to show that f̂i(α̂i, β̂) = fi(0) + op(1) uniformly over
1 ≤ i ≤ n. We first show that uniformly over 1 ≤ i ≤ n,

f̂i(α̂i, β̂) = E[f̂i(α,β)]|α=α̂i,β=β̂
+ op(1).

To this end, it suffices to show that

max
1≤i≤n

sup
(α,β)∈Rp+1

|f̂i(α,β)− E[f̂i(α,β)]| = op(1). (A.16)

Define the class of functions Gni := {gα,β,hn − E[gα,β,hn(ui1, xi1)]:
(α,β) ∈ Rp+1

} where gα,β,h(u, x) := K((u − α − x′β)/h). Put
Zni := ∥

T
t=1 g(uit , xit)∥Gi . By condition (C1), the class Gni is

uniformly bounded by some constant U (say) independent of i and
n. By Bousquet’s inequality (Proposition B.2), for all s > 0, with
probability at least 1 − e−s2 ,

Zni ≤ E[Zni] + s

2(TCf CKhn + 2UE[Zni])+

s2U
3
,

where we have used the fact that E[gα,β,h(ui1, xi1)2] = hE[

K(u)2

fi(uh + α + x′

i1β|xi1)du] ≤ hCf

K(u)2du = hCf CK with

CK :=

K(u)2du. To estimate E[Zni], we use Proposition B.1. The

bounded variation of K on R guarantees that there exist positive
constants A ≥ 3

√
e and v ≥ 1 independent of i and n such

that N(Gi, L2(Q ),Uϵ) ≤ (A/ϵ)v for every 0 < ϵ < 1 and
every probability measure Q on Rd+1 (cf. Nolan and Pollard (1987,
Lemma 22)). Thus, by Proposition B.1, we have

E[Zni] ≤ const. × {log n + (Thn log n)1/2},

where the constant is independent of i and n. Take s =
√
2 log n.

Then, for each 1 ≤ i ≤ n, with probability at least 1−n−2, we have

Zni ≤ const. × {log n + (Thn log n)1/2},

where the constant is independent of i and n. By the union bound
and the present hypothesis that log n/(Thn) → 0,we obtain (A.16).

The next step is to show that uniformly over 1 ≤ i ≤ n,

E[f̂i(α,β)]|α=α̂i,β=β̂
= E[f̂i(0, 0)] + op(1).

To see this, observe that

|E[f̂i(α,β)] − E[f̂i(0, 0)]|

=

E  K(u){fi(uhn + α + x′

i1β|xi1)− fi(uhn|xi1)}du


≤ Lf (|α| + M∥β∥).

Because of the weak consistency of (α̂, β̂), we obtain the desired
result.

The final step is to show that uniformly over 1 ≤ i ≤ n,

E[f̂i(0, 0)] = fi(0)+ o(1).

However, this can bederived froma standard calculation. The proof
ends. �
A.4. Proof of Theorem 5.1

The proof is basically a modification of the proofs of Theo-
rems 3.1 and 3.2 to the case where the data are dependent in the
time dimension. To avoid duplication, we only point out the re-
quired modifications.

For theweak consistency, the only point thatwe need to change
is the proof of (A.3). Instead of the Marcinkiewicz–Zygmund
inequality, we now apply a Bernstein type inequality for β-mixing
sequences (see Corollary C.1 below), by using Lemma C.1 to
evaluate the variance term (see also the discussion following the
lemma). Because of the exponential β-mixing property (condition
(D1)), and the uniform boundedness of xit (condition (B2)), taking
s = 2 log n and q = [

√
T ] in Corollary C.1, and using the fact that

(log n)/
√
T → 0, we have that for any fixed ϵ > 0, for large n,

max
1≤i≤n

P


sup

(α,β)∈Bi(δ)
|∆ni(α,β)− E[∆ni(α,β)]| > ϵ


≤ const. ×


n−2

+
√
TBa[

√
T ]


.

Because (log n)/
√
T → 0, the right side is o(n−1), which leads to

the weak consistency.
For the expansion (3.2), we need some efforts. We will follow

the notation in the proof of Theorem 3.2. First, the expansion (A.5)
does not depend on the independence assumption and is valid
under the present conditions. Second, instead of (A.10) and (A.11),
we wish to prove for any c ∈ (0, 1), provided that | log δn| ≍ log n,n−1

n
i=1

γ i{H
(1)
ni (α̂i, β̂)− H(1)ni (α̂i, β̂)− H(1)

ni (αi0,β0)}


= Op{T−(1−c)(log n) ∨ T−1/2δ1/2n (log n)1/2}, (A.17)

∥H(2)
n (α̂, β̂)− H(2)n (α̂, β̂)− H(2)

n (α0,β0)∥

= Op{T−(1−c)(log n) ∨ T−1/2δ1/2n (log n)1/2}. (A.18)

As before, we only provide a proof for (A.17). Pick any c ∈ (0, 1).
As in the proof of Theorem 3.2, it suffices to show that

max
1≤i≤n

E

 T
t=1

{g(ξit)− E[g(ξi1)]}


Gδn


= Op{T c(log n) ∨ T 1/2δ1/2n (log n)1/2}, (A.19)

where gα,β(u, x) := I(u ≤ α + x′β)− I(u ≤ 0), Gδ := {gα,β: |α| ≤

δ, ∥β∥ ≤ δ} and ξit := (uit , xit). Fix any 1 ≤ i ≤ n. We apply
Proposition C.1 to the class of functions G̃i,δn := {g −E[g(ξi1)]: g ∈

Gδn}. It is standard to see that G̃i,δn is uniformly bounded by U = 2
and there exist constants A ≥ 5e and v ≥ 1 independent of i and
n such that N(G̃i,δn , L1(Q ), 2ϵ) ≤ (A/ϵ)v for every 0 < ϵ < 1 and
every probability measure Q on Rp+1. Take q = [T c

] and deduce
from Lemma C.1 that supg∈G̃i,δn

Var{
q

t=1 g(ξit)/
√
q} ≤ const. ×

δ
1/2
n where the constant is independent of i and n (apply LemmaC.1
with δ = 1; see also the discussion following the lemma). Since by
condition (D1) max1≤i≤n Tβi([T c

]) = o(1), we obtain (A.19).
We continue to prove the expansion (3.2). The conclusion of

Step 3 in the proof of Theorem 3.2 follows from applying a Bern-
stein inequality and Talagrand’s inequality forβ-mixing sequences
(Corollary C.1 and Proposition C.2) instead of Hoeffding’s inequal-
ity and Talagrand’s inequality for i.i.d. random variables used in
the previous proof. Putting these together and taking c sufficiently
small, we obtain the expansion (3.2).



K. Kato et al. / Journal of Econometrics 170 (2012) 76–91 89
Finally, we prove the asymptotic normality. Assume that
n2(log n)3/T → 0. Then, we have the expansion
√
nT (β̂ − β0) = {Γ −1

+ o(1)}

×


1
nT

n
i=1

T
t=1

{τ − I(uit ≤ 0)}(xit − γ i)


+ op{(nT )−1/2

}.

We wish to show a central limit theorem for the first term on the
right side. Without loss of generality, we may assume that xit is
scalar. Put zni := T−1/2T

t=1{τ − I(uit ≤ 0)}(xit − γi). Observe
that zn1, . . . , znn are independent. Viewing that

1
√
nT

n
i=1

T
t=1

{τ − I(uit ≤ 0)}(xit − γi) =
1

√
n

n
i=1

zni,

we check the Lyapunov condition for the right sum. To this end,
it suffices to show that

n
i=1 E[|zni|3] = o(n3/2). By conditions

(B1) and (B2), {τ − I(uit ≤ 0)}(xit − γi) is uniformly bounded. By
the exponential β-mixing property (condition (D1)) and Theorem
3 of Yoshihara (1978), we now deduce that max1≤i≤n E[|zni|3] =

O(1), which leads to that
n

i=1 E[|zni|3] = O(n) = o(n3/2). This
completes the proof. �

Appendix B. Inequalities from empirical process theory: i.i.d.
case

In this appendix, we introduce two inequalities from empirical
process theory that were used in the proof of Theorem 3.2. Let
ξ1, . . . , ξT be i.i.d. random variables taking values in a measurable
space (S, S). The next proposition is a moment inequality for
centered empirical processes, which is due to Proposition 2.2 of
Gine and Guillou (2001). To avoid the measurability problem, we
assumeF to be a pointwisemeasurable class of functions, i.e., each
element of F is measurable and there exists a countable subset
G ⊂ F such that for each f ∈ F , there exists a sequence {gm} ⊂ G
with gm(ξ) → f (ξ) for all ξ ∈ S. This condition is discussed in
Section 2.3 of van der Vaart and Wellner (1996).

Proposition B.1. Let F be a uniformly bounded, pointwise measur-
able class of functions on (S, S) uniformly bounded by some con-
stant U such that for some constants A ≥ 3

√
e and v ≥ 1,

N(F , L2(Q ),Uϵ) ≤ (A/ϵ)v for every 0 < ϵ < 1 and every prob-
ability measure Q on (S, S). Moreover, suppose that E[f (ξ1)] = 0 for
all f ∈ F . Let σ 2

≥ supf∈F E[f 2(ξ1)] be such that 0 < σ ≤ U. Then,
for all T ≥ 1,

E

 T
t=1

f (ξt)


F



≤ C


vU log

AU
σ

+
√
v
√
Tσ


log

AU
σ


,

where C is a universal constant.

The next proposition is a Bernstein type inequality for centered
empirical processes, which originates from Talagrand (1996). The
current form of the inequality is due to Bousquet (2002).15

15 Talagrand’s (1996) Theorem 1.4 assumes F to be a countable class. Clearly, this
condition can be weakened to the case where F is pointwise measurable.
Proposition B.2. Let F be a pointwise measurable class of functions
on S uniformly bounded by some constant U. Moreover, suppose that
E[f (ξ1)] = 0 for all f ∈ F . Let σ 2 be a positive constant such that
σ 2

≥ supf∈F [f2(ξ1)]. Put Z := ∥
T

t=1 f (ξt)∥F . Then, for all s > 0,
we have

P

Z ≥ E[Z] + s


2(Tσ 2 + 2UE[Z])+

s2U
3


≤ e−s2 .

Appendix C. Some stochastic inequalities for β-mixing se-
quences

In this section, we introduce some stochastic inequalities for
β-mixing sequences that we used in the proof of Theorem 5.1.
Let {ξt , t ≥ 1} be a stationary process taking values in a
measurable space (S, S). We assume that S is a Polish space and
S is its Borel σ -field. For a function f on S and a positive integer
q, define σ 2

q (f ) := Var{f (ξ1)} + 2
q−1

j=1 (1 − j/q)Cov{f (ξ1),
f (ξ1+j)}, which is the variance of the sum

q
t=1 f (ξt)/

√
q. Let β(j)

denote the β-mixing coefficients of {ξt}. The next proposition is an
extension of Proposition B.1 to β-mixing sequences.

Proposition C.1. Let F be a pointwise measurable class of functions
on S such that (i) for any f ∈ F , E[f (ξt)] = 0; (ii) for any f ∈ F ,
supx∈S |f (x)| ≤ U; (iii) there exist constants A ≥ 5e and v ≥ 1
such that N(F , L1(Q ),Uϵ) ≤ (A/ϵ)v for every 0 < ϵ < 1 and
every probability measure Q on S. For any integer q ∈ [1, T/2], let
σ 2
q ≥ supf∈F σ

2
q (f ) be such that 0 < σ 2

q ≤ 2qU2. Then, we have

E

 T
t=1

f (ξt)


F



≤ C


qvU log

√
qA′U
σq

+
√
v
√
Tσq


log

√
qA′U
σq


+ 2UTβ(q), (C.1)

where C is a universal constant and A′
:=

√
2A.

Proof. The proof is based on Proposition 2 of Doukhan et al. (1995),
which is deduced from Berbee’s (1979) coupling lemma, and the
proof of Proposition 2.1 in Gine andGuillou (2001). Use Proposition
2 of Doukhan et al. (1995) to construct a sequence {ξ̃t}t≥1 such that
(a) Ξ̃k := (ξ̃1+(k−1)q, . . . , ξ̃kq) has the same distribution as Ξk :=

(ξ1+(k−1)q, . . . , ξkq); (b) P(Ξk ≠ Ξ̃k) ≤ β(q); (c) {Ξ̃2k, k ≥ 1}
are independent and so are {Ξ̃2k−1, k ≥ 1}. Put r := [T/(2q)].
With a slight abuse of notation, for a function f on S, we write
f (Ξk) =


t∈Tk

f (ξt), where Tk := {1 + (k − 1)q, . . . , kq}. Then,
we have

E

 T
t=1

f (ξt)


F


≤ E

 T
t=1

f (ξ̃t)


F



+ 2UE


T

t=1

I(ξt ≠ ξ̃t)



≤ E

 T
t=1

f (ξ̃t)


F


+ 2UTβ(q)

≤ 2E

 r
k=1

f (Ξ̃2k)


F


+ (T − 2qr)U + 2UTβ(q), (C.2)
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where the second inequality is due to the fact that {Ξ̃2k−1,

1 ≤ k ≤ r} has the same distribution as {Ξ̃2k, 1 ≤ k ≤ r}.
Let ϵ1, . . . , ϵr be i.i.d. random variables with P(ϵk = ±1) = 1/2
independent of {Ξ̃2k, 1 ≤ k ≤ r}. Recall that Ξ̃2k, 1 ≤ k ≤ r are
i.i.d. By Lemma 2.3.1 of van der Vaart andWellner (1996), we have

E

 r
k=1

f (Ξ̃2k)


F


≤ 2E

 r
k=1

ϵkf (Ξ̃2k)


F



= 2qUE

 r
k=1

ϵkϕ(Ξ̃2k)


H


, (C.3)

where H := {ϕ(ξ1, . . . , ξq) =
q

t=1 f (ξt)/(qU): f ∈ F }. We shall
bound the right side of (C.3). Without loss of generality, we may
assume that 0 ∈ H . By Hoeffding’s inequality, given Ξ̃2k, 1 ≤

k ≤ r , the process ϕ →
r

k=1 ϵkϕ(Ξ̃2k)/
√
r is sub-Gaussian for

the L2(Q̃r) norm, where Q̃r is the empirical distribution on Sq that
assigns probability 1/r to each even block Ξ̃2k, 1 ≤ k ≤ r . Thus,
by Corollary 2.2.8 of van der Vaart and Wellner (1996), we have

Eϵ

 r
k=1

ϵkϕ(Ξ̃2k)/
√
r


H



≤ C
 r

k=1 ϕ
2(Ξ̃2k)/r

1/2
H

0


logN(H, L2(Q̃r), τ )dτ ,

where Eϵ stands for the expectation with respect to ϵk’s and C is a
universal constant. Let P̃qr denote the empirical distribution on S
that assigns probability 1/(qr) to each ξ̃t , t ∈ ∪

r
k=1 T2k. Since for

ϕi(ξ1, . . . , ξq) =
q

t=1 fi(ξt)/(qU), fi ∈ F , i = 1, 2,

1
r

r
k=1

{ϕ1(Ξ̃2k)− ϕ2(Ξ̃2k)}
2

=
1

q2rU2

r
k=1

{f1(Ξ̃2k)− f2(Ξ̃2k)}
2

≤
2

qrU

r
k=1

|f1(Ξ̃2k)− f2(Ξ̃2k)|

≤
2
U

∥f1 − f2∥L1(P̃qr )
,

we have N(H, L2(Q̃r), τ ) ≤ N(F , L1(P̃qr),Uτ 2/2) ≤ (2A/τ 2)v .
Thus,

Eϵ

 r
k=1

ϵkϕ(Ξ̃2k)/
√
r


H



≤ C
√
2v
 r

k=1 ϕ
2(Ξ̃2k)/r
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log
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dτ

= 2C
√
Av


∞

√
2A/∥
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k=1 ϕ

2(Ξ̃2k)/r∥
1/2
H

√
log τ
τ 2

dτ .

Integration by parts gives
∞

a

√
log τ
τ 2

dτ =


−

√
log τ
τ

∞

a
+

1
2


∞

a

1
τ 2

√
log τ

dτ

≤

√
log a
a

+
1
2


∞

a

√
log τ
τ 2

dτ , a ≥ e,

from which we have
∞

a

√
log τ
τ 2

dτ ≤
2
√
log a
a

, a ≥ e.
Therefore, we have

E

 r
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ϵkϕ(Ξ̃2k)/
√
r


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
≤ 2C

√
vE
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log
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ϕ2(Ξ̃2k)/r
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H

 ,
where the second inequality is due to Hölder’s inequality, the
concavity of the map x → x log(a/x) and Jensen’s inequality.

Now, by Corollary 3.4 of Talagrand (1994),

E

 r
k=1

ϕ2(Ξ̃2k)


H


≤

rσ 2
q

qU2
+ 8E

 r
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ϵkϕ(Ξ̃2k)


H


,

and the right side is bounded by 10r because σ 2
q ≤ 2qU2. Since the

map x → x log(a/x) is non-decreasing for 0 ≤ x ≤ a/e and A ≥ 5e,
we have

E

 r
k=1

ϵkϕ(Ξ̃2k)/
√
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
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Put

Z := E

 r
k=1

ϵkϕ(Ξ̃2k)
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
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Then, Z satisfies
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≤ C
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log
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+ 8CvZ log
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,

where C is another universal constant and A′
:=

√
2A. This gives
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+
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rσq
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, (C.4)

where the second inequality is due to
√
a + b ≤

√
a +

√
b

for a, b > 0, and C ′ is another universal constant. Combining
(C.2)–(C.4) yields the desired inequality. Note that (T − 2qr)U
is absorbed into CqvU log(

√
qA′U/σq) since T − 2qr ≤ 2q and

√
qA′U/σq > e under our assumption. �
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Proposition C.2 and Corollary C.1 are due to Kato and Galvao
(2010).

Proposition C.2 (Talagrand’s Inequality for β-Mixing Sequences).
Suppose that the conditions of Proposition C.1 are satisfied. Assume
that

Tσ 2
q ≥ q2vU2 log

√
qA′U
σq

,

where A′
:=

√
2A. Then, for all s > 0, we have

P

 T
t=1

f (ξt)
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F

≥ C
√
v
√
Tσq


log

√
qA′U
σq

+ Cσq
√
sT + sqCU


≤ 2e−s

+ 2rβ(q),

where r := [T/(2q)] and C is a universal constant.

Corollary C.1 (Bernstein’s Inequality for β-Mixing Sequences). Let f
be a function on S such that supx∈S |f (x)| ≤ U and E[f (ξ1)] = 0. Pick
any q ∈ [1, T/2]. Then, for all s > 0, we have

P

 T
t=1

f (ξt)

 ≥ C

(s ∨ 1)Tσq(f )+ sqU


≤ 2e−s

+ 2rβ(q),

where r := [T/(2q)] and C is a universal constant.

In applying those inequalities, the evaluation of the variance
term σ 2

q (f ) is essential. For β-mixing processes, Yoshihara’s (1976)
Lemma 1 is particularly useful for that purpose. Since it is
repeatedly used in the proofs of the theorems above, we describe
a special case of that lemma.

Lemma C.1 (Yoshihara (1976)). Let j be a fixed positive integer. Let f
and g be functions on S such that E[f (ξ1)] = E[g(ξ1+j)] = 0, and for
some positive constants δ and M,

E[|f (ξ1)|1+δ]E[|g(ξ1+j)|
1+δ

] ≤ M,

E[|f (ξ1)g(ξ1+j)|
1+δ

] ≤ M.
(C.5)

Then, we have

|Cov(f (ξ1), g(ξ1+j))| ≤ 4M1/(1+δ)β(j)δ/(1+δ).

A direct consequence of Lemma C.1 is that if there exist
positive constants δ and M such that (C.5) holds for any
positive integer j and


∞

j=1 β(j)
1/(1+δ) < ∞, then the infinite

sum


∞

j=1 Cov{f (ξ1), g(ξ1+j)} is absolutely convergent, and in
particular, for any positive integer q,

Var


q

t=1

f (ξt)/
√
q


≤ 4M1/(1+δ)


1 + 2

∞
j=1

β(j)δ/(1+δ)

.

If β(j) decays exponentially fast as j → ∞, i.e., for some constants
a ∈ (0, 1) and B > 0, β(j) ≤ Baj, then


∞

j=1 β(j)
δ/(1+δ) < ∞ for

any δ > 0.
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