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A well known result is that many of the tests used in econometrics, such as the
Rao score (RS) test, may not be robust to misspecified alternatives, that is, when
the alternative model does not correspond to the underlying data generating process.
Under this scenario, these tests spuriously reject the null hypothesis too often. We
generalize this result to generalized method of moments–based (GMM-based) tests.
We also extend the method proposed in Bera and Yoon (1993, Econometric Theory
9, 649–658) for constructing RS tests that are robust to local misspecification to
GMM-based tests. Finally, a further generalization for general estimating and testing
functions is developed. This framework encompasses both likelihood and GMM-
based results.

1. INTRODUCTION

The standard Rao’s score (RS) test based on the maximum-likelihood (ML) frame-
work has been extensively used to derive tests for misspecification, especially
when the estimation of a restricted model is computationally convenient. Nev-
ertheless, Davidson and MacKinnon (1987) and Saikkonen (1989) showed that
the RS test is adversely affected when the alternative hypothesis is incorrectly
specified, that is, when the true model does not correspond to the alternative pos-
tulated by the researcher. Bera and Yoon (1993) proposed a modified RS test (BY
test) that, albeit still based on a fully restricted ML estimator, is immune to lo-
cal misspecification. This principle has been successfully implemented in many
econometric “model search” problems; see, for example, Anselin, Bera, Florax,
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and Yoon (1996), Godfrey and Veall (2000), Bera, Sosa-Escudero, and Yoon
(2001), and Baltagi and Li (2001).

An obviously restrictive feature of likelihood-based procedures is that they re-
quire complete specification of the underlying probabilistic structure of the model
and that limits the scope of the BY procedure. This paper derives a BY adjusted
type test in the generalized method of moments (GMM) framework that requires
specification of some moment conditions only. The proposed test can be viewed
as a BY type modification of the Newey and West (1987) formulation of the RS
test under GMM setup. A further generalization provides robust BY tests in a
general estimating and testing functions setup. Bera and Yoon (1993) showed that
for local misspecification, their adjusted test is asymptotically equivalent to the
Neyman (1959) C(α) test and therefore the BY procedure shares its optimality
properties. We can expect the tests suggested in this paper to possess certain opti-
mality properties.

2. RS TEST AND LOCAL MISSPECIFICATION

Let us denote the log-likelihood of n independent and identically distributed (i.i.d.)
random variables z1, z2, . . . , zn by �n(θ) and consider the following partition of
the parameter space θ = (θ ′

1,θ
′
2,θ

′
3)

′. Here θ1, θ2, and θ3 are, respectively, vec-
tors in open subsets of �p1 , �p2 , and �p3 , and thus the dimension of θ is p1 +
p2 + p3 = p. Let dj,n(θ) denote the score vectors n−1∂�n(θ)/∂θj , j = 1,2,3. The
information matrix J (θ) is given by

J (θ) = −E

[
1

n

∂2ln(θ)

∂θ∂θ ′

]
=
⎡⎢⎣J11(θ) J12(θ) J13(θ)

J12(θ) J22(θ) J23(θ)

J13(θ) J23(θ) J33(θ)

⎤⎥⎦ .

Consider the problem of testing H2
0 : θ2 = θ20 when H3

0 : θ3 = θ30 holds. Let
θ̂ = (θ̂ ′

1,θ
′
20,θ

′
30)

′, where θ̂1 is the ML estimator of θ1 under the joint null H23
0 :

θ2 = θ20, θ3 = θ30. A standard result is that under the local alternative H2
A : θ2 =

θ20 + δ2/
√

n, 0 < δ2 < ∞, and H3
0 ,

RS2·1(θ̂) = n d2,n(θ̂)′ J−1
2·1 (θ̂)d2,n(θ̂)

d→ χ2
p2

(λ2·1),

with J2·1(θ) = J22(θ) − J21(θ)J−1
11 (θ)J12(θ), and the noncentrality parameter

λ2·1 = δ′
2 J2·1(θ0)δ2, where θ0 = (θ ′

10,θ
′
20,θ

′
30)

′, θ10 being the true value of θ1.
Therefore, under H2

0 , RS2·1(θ̂) has, asymptotically, a central chi-squared distri-
bution and hence asymptotically correct size.

Davidson and MacKinnon (1987) and Saikkonen (1989) showed that when the
alternative hypothesis is locally misspecified, that is, when H3

A : θ3 = θ30 +δ3/
√

n
holds, RS2·1(θ̂) no longer has a central asymptotic distribution. In fact, they
showed that

RS2·1(θ̂)
d→ χ2

p2
(λ2/3·1),
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with λ2/3·1 = δ′
3 J32·1(θ0)J−1

2·1 (θ0)J23·1(θ0)δ3 and J23·1(θ) = J23(θ) − J21(θ)J−1
11

(θ)J13(θ) = J ′
32·1(θ). In particular, when J23·1(θ0), which measures the partial

covariance between d2,n(θ̂) and d3,n(θ̂) after controlling for the linear effect of
d1,n(θ̂), is a null matrix, then λ2/3·1 = 0; that is, the local misspecification of θ3

has no asymptotic effect on the performance of RS2·1(θ̂).
Bera and Yoon (1993) proposed a locally size-robust version of RS2·1(θ̂), given

by

RS∗
2·1(θ̂) = n d∗

2·1,n(θ̂)′
[

J2·1(θ̂)− J23·1(θ̂)J−1
2·1 (θ̂)J32·1(θ̂)

]−1
d∗

2·1,n(θ̂),

where d∗
2·1,n(θ) ≡ d2,n(θ)− J23·1(θ)J−1

3·1 (θ)d3,n(θ), and showed that when H2
0 is

true and H3
0 or H3

A holds, RS∗
2·1(θ̂)

d→ χ2
p2

(0), and so the test is robust to local

misspecification because it preserves the central χ2 asymptotic distribution even
under local departures of θ3 away from θ30.

3. GMM-BASED ROBUST TESTS

An obvious restrictive feature of likelihood-based procedures is that they require
full specification of the underlying probabilistic model, which limits the scope of
the BY procedure. In this section we derive BY type adjustments to GMM-based
RS tests, requiring moment conditions only.

We will assume that there is a vector of m functions g(Z ,θ) satisfying the
following moment conditions:

E [g(Z ,θ)] = 0 if and only if θ = θ0,

where θ and θ0 are vectors in open subsets of �p and for identification pur-
poses we require m ≥ p. The sample analog of the left-hand side of the preceding
equation is

gn(θ) = 1

n

n

∑
i=1

g(zi ,θ).

Let 	n(θ) be a m × m positive definite symmetric matrix. We consider the con-
tinuous updating estimator (CUE) version of GMM. See Hansen, Heaton, and
Yaron (1996). Our (unrestricted) GMM estimator of θ0 will be argmaxθ Qn(θ),
with Qn(θ) = − 1

2 gn(θ)′	−1
n (θ)gn(θ), which can be viewed as a counterpart of

the log-likelihood function �n(θ). Let 	(θ) = E[g(Z ,θ)g(Z ,θ)′]. For asymp-

totic efficiency we will assume 	n(θ)
p−→ 	(θ) (see Hansen, 1982; Newey and

McFadden, 1994).
Let ∇θ g(z,θ) = ∂g(z,θ)/∂θ ′ be the m × p Jacobian matrix of g(z,θ), G(θ) =

E[∇θ g(Z ,θ)] and Gn(θ) = 1/n ∑n
i=1 ∇θ g(zi ,θ). Define the counterpart of the

score (pseudo-score) as qn(θ) = −Gn(θ)	−1
n (θ)gn(θ) and define qj,n(θ) as the
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pj × 1 subvector, j = 1,2,3. Also, let B(θ) = G(θ)′	−1(θ)G(θ) and Bn(θ) =
Gn(θ)′	−1

n (θ)Gn(θ). We partition B(θ) and Bn(θ) the same way we partitioned
the information matrix J (θ) for the three parameter vectors, θ1, θ2, and θ3. The
GMM estimator for θ under the joint null H23

0 is given by θ̂ g = argmaxθ Qn(θ)
subject to θ2 = θ20, θ3 = θ30.

The equivalent of the score test for H2
0 in the GMM framework is given by

L M2·1(θ̂ g) = n q2,n(θ̂ g)′ B−1
2·1,n(θ̂ g) q2,n(θ̂ g),

where B2·1(θ) = B22(θ) − B21(θ)B11(θ)−1 B12(θ). Under H3
0 and H2

A,√
n q2,n(θ̂ g)

d→ N (B2·1(θ0)δ2, B2·1(θ0)), and therefore,

L M2·1(θ̂ g)
d→ χ2

p2
(λ

g
2·1),

with λ
g
2·1 = δ′

2 B2·1(θ0)δ2.
As expected, the presence of local misspecification in θ3 adversely affects

L M2·1(θ̂ g). The argument follows Saikkonen (1989) closely. Under the regular-

ity conditions in Newey and MacFaden (1994), Gn(θ̂ g)
p→ G(θ0) and 	n(θ̂ g)

p→
	(θ0) (see Newey and MacFadden, 1994, Thm. 3.2), and then, by Slutsky’s theo-

rem, Gn(θ̂
g)′	−1

n (θ̂ g)
√

n gn(θ̂ g)
d→ G(θ0)

′	−1(θ0)
√

n gn(θ̂ g). Consider the
Taylor expansions of q1,n(θ̂

g) and q2,n(θ̂
g) evaluated at θ∗ = (θ ′

10,θ
′
20 + δ′

2/
√

n,

θ ′
30 + δ′

3/
√

n)′ and note that G(θ∗)	−1(θ∗) = G(θ0)	
−1(θ0)+op(1). Then,

√
n q1,n(θ̂ g) = √

n q1,n(θ∗)− G1(θ0)
′	−1(θ0)G1(θ0)

√
n
(
θ̂

g
1 − θ10

)
+G1(θ0)

′	−1(θ0)G2(θ0) δ2 + G1(θ0)
′	−1(θ0)G3(θ0)δ3 +op(1),

and
√

n q2,n(θ̂ g) = √
n q2,n(θ∗)− G2(θ0)

′	−1(θ0)G1(θ0)
√

n
(
θ̂

g
1 − θ10

)
+G2(θ0)

′	−1(θ0)G2(θ0)δ2 + G2(θ0)
′	−1(θ0)G3(θ0) δ3 +op(1).

By the first-order conditions of GMM,
√

n q1,n(θ̂
g) = 0. Rearranging terms and

using the definition of B, we have

√
n q2,n(θ̂ g) =

(
−G ′

2	
−1 + B21 B−1

11 G ′
1	

−1
)√

n gn(θ∗)

+
(

B22 − B21 B−1
11 B12

)
δ2 +
(

B23 − B21 B−1
11 B13

)
δ3 +op(1),

where the matrices G and 	 are evaluated at θ0, but the latter is excluded for
notational convenience. Finally, note that G ′

2	
−1√ngn(θ

∗) p→ 0 and G ′
1	

−1

√
ngn(θ∗) p→ 0. Thus,

√
n q2,n(θ̂

g)
d→ N (B2·1δ2 + B23·1δ3, B2·1), where
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B23·1 = B23 − B21 B−1
11 B13. Therefore, the asymptotic noncentral χ2 distribution

of L M2·1(θ̂ g) under H2
A : θ2 = θ20 + δ2/

√
n, and H3

A : θ3 = θ30 + δ3/
√

n is a di-
rect consequence of the nonzero mean of the asymptotic normal distribution. We
summarize this result as follows.

THEOREM 1. Under H2
0 , but when H3

A holds,
√

nq2,n(θ̂ g)
d→ N (B23·1(θ0)

δ3, B2·1(θ0)) and L M2·1(θ̂ g)
d→ χ2

p2
(λ

g
2/3·1), with λ

g
2/3·1 = δ′

3 B32·1(θ0)B−1
2·1 (θ0)

B23·1(θ0)δ3, where B23·1(θ0) = B32·1(θ0)
′.

This result can be seen as an extension of Davidson and MacKinnon (1987) and
Saikkonen (1989) to the GMM framework, and it has the same implications, as in
the ML estimation case, that the test L M2·1(θ̂g) will overreject H2

0 and not provide
any information regarding the source(s) of departure from the tested model.

The procedure for constructing a GMM-based locally size-robust test is as fol-
lows. Using Theorem 1 under H2

0 and H3
A,

√
n q2,n(θ̂ g)− B23·1(θ0)δ3

d→ N (0, B2·1(θ0)) .

The asymptotic distribution of the GMM score corresponding to θ3 can be
shown to be

√
n q3,n(θ̂ g)

d→ N (B3·1(θ0)δ3, B3·1(θ0)) ,

where B3·1(θ) = B33(θ)− B31(θ)B−1
11 (θ)B13(θ). Therefore,

√
n B3·1(θ0)

−1q3,n(θ̂
g)

d→ N
(
δ3, B−1

3·1 (θ0)
)

.

Consequently, we have the asymptotic distribution of the effective GMM score,
under H2

0 and irrespective of H3
0 or H3

A, as

√
n
[

q2,n(θ̂ g)− B23·1,n(θ̂ g)B−1
3·1,n(θ̂ g)q3,n(θ̂ g)

]
d→ N

[
0, B2·1(θ0)− B23·1(θ0)B−1

3·1 (θ0)B32·1(θ0)
]
.

Because it has mean zero, an asymptotically robust BY type test L M∗
2·1(θ̂ g) for

the GMM framework can be constructed as follows.

THEOREM 2. Under H 2
0 , irrespective of whether H 3

0 or H 3
A holds, LM∗

2·1(θ̂g)=
n q∗

2,n(θ̂g)
′
[

B2·1,n(θ̂g)− B23·1,n(θ)B−1
3·1,n(θ̂g)B32·1,n(θ̂g)

]−1
q∗

2,n(θ̂g)
d→ χ2

p2
(0),

where q∗
2,n(θ) ≡ q2,n(θ) − B23·1(θ)B−1

3·1 (θ) q3,n(θ) is the adjusted pseudo-score
for θ2.

Note that under H2
A and H3

0 , L M∗
2·1(θ̂g)

d→ χ2
p2

(λ
g∗
2·1), where λ

g∗
2·1 = δ′

2

(
B2·1(θ0)

−B23·1(θ0)B−1
3·1 (θ0)B32·1(θ0)

)
δ2. It follows that λ

g
2·1 −λ

g∗
2·1 ≥ 0. Hence when there
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is no local misspecification, the asymptotic power of L M∗
2·1(θ̂ g) is less than (or

equal to) that of L M2·1(θ̂ g). This magnitude can be seen as the cost of insur-
ing against possible local misspecification, that is, the loss of power incurred by
robustifying the test unnecessarily.

4. GENERALIZATION TO ESTIMATING AND TESTING FUNCTIONS

The test statistics presented previously can be extended to a more general frame-
work. Let w(Z ,θ) be an r -dimensional vector of functions and let wn = n−1

∑n
i=1 w(zi ,θ). The vector w(Z ,θ) can be viewed as a general inference function,

and it will be used both for estimation and testing under the framework of Newey
(1985).

Let 
n be a γ × r matrix with γ ≥ p1 and 
n = 
 + op(1). Assume that the
following estimating equations for θ1 hold:


E[w(Z , (θ1,θ20,θ30))] = 0 only if θ1 = θ10.

Let �n be a π × r matrix and �n = �+ op(1). Assume that a specification test
can be based on the testing equations

�E[w(Z , (θ1,θ20,θ30))] = 0 only if θ2 = θ20 and θ3 = θ30.

Let K = E[∂w(Z ,θ0)/∂θ1], V = E[w(Z ,θ0) w(Z ,θ0)
′], D = E[w(Z ,θ0)d23

(Z ,θ0)
′], and P = I − K (
K )−1
. Assume that V and 
K are nonsingular

and that the regularity conditions in Newey (1985) hold. Then under H23
A : θ2 =

θ20 + δ2/
√

n,θ3 = θ30 + δ3/
√

n, and
√

n �nwn
d→ N

(
�P Dδ23,�PV P ′�′).

Hence

n w′
n�′

n(�PV P ′�′)−1�nwn
d→ χ2

π (λπ),

with δ23 = [δ′
2,δ

′
3]′ and λπ = (�P Dδ23)

′(�PV P ′�′)−1(�P Dδ23). In terms of
estimation, the ML approach is a special case with scores as estimating functions,
and the RS tests correspond to the case where the scores are used as test func-
tions (see Bera and Bilias, 2001). GMM-based estimators and tests can also be
constructed using the same setup with pseudo-scores in place of scores.

To derive locally size-robust tests for H2
0 in the presence of local misspecifica-

tion of θ3, let �P Dδ23 ≡ �δ23 ≡ �2δ2 +�3δ3. The BY approach can be restated
as finding �̂3 = �3 + op(1) and δ̂3 = δ3 + Op(1/

√
n), such that

√
n �nwn −

�̂3δ̂3
d→ N (β(δ2),�), where β(·) depends on δ2 but not on δ3 and � denotes

the asymptotic variance of
√

n �nwn − �̂3δ̂3. The following result offers a gen-
eral device to construct locally size-robust asymptotic tests.

THEOREM 3. Assume that two different specification test statistics for H 23
0

are available (say, test statistics A and B), satisfying the assumptions of Newey
(1985). For each test, let �A

2 , �A
3 , �B

2 , �B
3 be defined as before and let �̂ denote
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their consistent estimators. Define m2(3)·1,n = �A,nwA,n − �̂A
3 (�̂B

3 )M�B,nwB,n,
where the superscript M denotes the Moore–Penrose generalized inverse of a
(not necessarily square) matrix. Then, under H 2

A and when H 3
0 or H 3

A holds,√
n m2(3)·1,n

d→ N
[(

�A
2 −�A

3 (�B
3 )M�B

2

)
δ2,�2(3)·1

]
, where �2(3)·1 denotes

the asymptotic variance of
√

n m2(3)·1,n. Moreover,

n m′
2(3)·1,n �̂−1

2(3)·1 m2(3)·1,n
d→ χ2

ma
(λ2(3)·1),

where λ2(3)·1 = δ′
2

(
�A

2 −�A
3 (�B

3 )M�B
2

)′
�−1

2(3)·1
(
�A

2 −�A
3 (�B

3 )M�B
2

)
δ2 and

�̂2(3)·1 is a consistent estimator of �2(3)·1.

Proof. The result follows from the Newey (1985) result and the fact that
m2(3)·1,n is a linear combination of two asymptotically normal statistics. n

This result provides a very general framework for testing under locally mis-
specified alternatives, which encompasses the RS and GMM-based test derived
previously. For example the robust version of the RS test can be derived in this
general framework by considering as “test A” the RS test for H2

0 , and wA,n(θ) =
[d1,n(θ),d2,n(θ)], �A = [0, I ], 
A = [I,0], �A

2 = J2·1(θ0), �A
3 = J23·1(θ0), and

as “test B” the RS test for H3
0 , and wB,n(θ) = [d1,n(θ),d3,n(θ)], �B = [0, I ],


B = [I,0], �B
3 = J3·1(θ0), �B

2 = J32·1(θ0). Then, n m′
2(3)·1,n �̂−1

2(3)·1m2(3)·1,n =
RS∗

2·1(θ̂), where m2(3)·1,n and �̂2(3)·1 are defined as in Theorem 3 and RS∗
2·1(θ̂)

is the adjusted RS statistic defined in Section 2. The modified version of the
RS statistic in the GMM framework can be obtained similarly.

5. CONCLUSIONS

This paper provides a generalization of the Bera–Yoon principle to GMM-based
tests and to general estimating and testing functions. The simplicity of this exten-
sion and the potentially vast usefulness of the aforementioned principle suggest
that further developments would be desirable.

For instance, the idea can be extended to nonparametric scores as developed
in González-Rivera and Ullah (2001). Another extension would be to consider
White type (White, 1982) distributional misspecification into the likelihood-based
BY adjusted RS tests, as in Bera, Bilias, and Yoon (2007). Under certain con-
ditions choosing a convenient distributional form, although not necessarily the
“true” one, is a valid alternative to the GMM-based testing framework developed
here. Finally, it would be interesting to extend the principle to handle “moment
function misspecification” as discussed in Hall (2005, Ch. 4).

Although we mentioned some applications of the BY principle, its general-
ization to the GMM framework opens up many potential applications. For in-
stance, additional features of the econometric model can be incorporated into the
Saavedra (2003) testing framework for spatial dependence based on the method
of moments. Anselin et al. (1996) used the BY principle to identify the exact
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source of spatial dependence (through the error term of the lag of the dependent
variable) in spatial regression models. Such spatial models are increasingly being
estimated by method of moments. It would be interesting to explore the proposed
GMM strategy of this paper in this context. Additionally, our approach can be
used to develop specification tests in any setup where GMM estimators are pre-
ferred to ML estimation, for example, in the context of dynamic panel data models
(Arellano and Bond, 1991) and selection models (Heckman, 1976).
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